Der „Deutsche Gesundheitsbericht Diabetes“ wird jedes Jahr neu aufgelegt und beinhaltet die aktuellsten Zahlen und Entwicklungen zur Erkrankung Diabetes mellitus in Deutschland. Er wird in Zusammenarbeit mit zahlreichen Fachexperten erstellt und von der Deutschen Diabetes Gesellschaft herausgegeben.

Deutscher Gesundheitsbericht Diabetes 2022 – Literaturlisten

Klicken Sie auf eine Kapitelüberschrift, um die jeweilige Literaturliste einzusehen:


Epidemiologie des Diabetes in Deutschland (S. 9-15)
  1. Tönnies T, Röckl S, Hoyer A, et al. (2019) Projected number of people with diagnosed Type 2 diabetes in Germany in 2040. Diabet Med 36: 1217-1225
  2. Rosenbauer J, Neu A, Rothe U, Seufert J, Holl RW (2019) Types of diabetes are not limited to age groups: type 1 diabetes in adults and type 2 diabetes in children and adolescents. Journal of Health Monitoring 4: 10.25646/25987
  3. Heidemann C, Scheidt-Nave C (2017) Prevalence, incidence and mortality of diabetes mellitus in adults in Germany – A review in the framework of the Diabetes Surveillance. Journal of Health Monitoring 2: 98-121
  4. Jacobs E, Rathmann W (2017) Epidemiologie des Diabetes. Diabetologie und Stoffwechsel 12: 437-446
  5. Goffrier B, Schulz M, Bätzing-Feigenbaum J (2017) Administrative Prävalenzen und Inzidenzen des Diabetes mellitus von 2009 bis 2015. Versorgungsatlas-Bericht 17/03: 10.20364/VA-20317.20303
  6. Schmidt C, Reitzle L, Dreß J, Rommel A, Ziese T, Heidemann C (2020) Prävalenz und Inzidenz des dokumentierten Diabetes mellitus – Referenzauswertung für die Diabetes-Surveillance auf Basis von Daten aller gesetzlich Krankenversicherten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63: 93-102
  7. Heidemann C, Du Y, Paprott R, Haftenberger M, Rathmann W, Scheidt-Nave C (2016) Temporal changes in the prevalence of diagnosed diabetes, undiagnosed diabetes and prediabetes: findings from the German Health Interview and Examination Surveys in 1997–1999 and 2008–2011. Diabet Med 33: 1406-1414
  8. Boehme MWJ, Buechele G, Frankenhauser-Mannuss J, et al. (2015) Prevalence, incidence and concomitant co-morbidities of type 2 diabetes mellitus in South Western Germany - a retrospective cohort and case control study in claims data of a large statutory health insurance. BMC Public Health 15: 855
  9. Carstensen B, Rønn PF, Jørgensen ME (2020) Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996–2016. BMJ Open Diabetes Res Care 8: e001071
  10. Gregg EW, Cheng YJ, Srinivasan M, et al. (2018) Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet 391: 2430-2440
  11. Carstensen B, Kristensen JK, Ottosen P, Borch-Johnsen K, on behalf of the steering group of the National Diabetes R (2008) The Danish National Diabetes Register: trends in incidence, prevalence and mortality. Diabetologia 51: 2187-2196
  12. Tönnies T, Heidemann C, Paprott R, et al. (2021) Estimating the impact of tax policy interventions on the projected number and prevalence of adults with type 2 diabetes in Germany between 2020 and 2040. BMJ Open Diabetes Res Care 9: e001813
  13. Rathmann W, Haastert B, Icks A, et al. (2003) High prevalence of undiagnosed diabetes mellitus in Southern Germany: Target populations for efficient screening. The KORA survey 2000. Diabetologia 46: 182-189
  14. Meisinger C, Strassburger K, Heier M, et al. (2010) Prevalence of undiagnosed diabetes and impaired glucose regulation in 35–59-year-old individuals in Southern Germany: the KORA F4 Study. Diabet Med 27: 360-362
  15. Graf C (2018) Regionale Prävalenzen des Diabetes mellitus in Deutschland. unter: https://www.barmer.de/blob/171334/86ebe71e4fe3368efa96c23637c8ea64/data/dl-diabetes-atlas.pdf (abgerufen am 13. Juli 2021)
  16. Kauhl B, Pieper J, Schweikart J, Keste A, Moskwyn M (2018) Die räumliche Verbreitung des Typ 2 Diabetes Mellitus in Berlin – Die Anwendung einer geografisch gewichteten Regressionsanalyse zur Identifikation ortsspezifischer Risikogruppen. Gesundheitswesen 80: S64-S70
  17. Kauhl B, Schweikart J, Krafft T, Keste A, Moskwyn M (2016) Do the risk factors for type 2 diabetes mellitus vary by location? A spatial analysis of health insurance claims in Northeastern Germany using kernel density estimation and geographically weighted regression. Int J Health Geogr 15: 38
  18. Heidemann C, Kuhnert R, Born S, Scheidt-Nave C (2017) 12-Monats-Prävalenz des bekannten Diabetes mellitus in Deutschland. J Health Monitoring 2: 48–56
  19. Wissenschaftliches Institut der AOK (WIdO) (2019) Gesundheitsatlas Deutschland, Diabetes mellitus Typ 2. unter: https://wido.de/fileadmin/Dateien/Dokumente/Publikationen_Produkte/Buchreihen/Gesundheitsatlas/wido_int_gesundheitsatlas_deutschland_1119.pdf (abgerufen am 13 Juli 2021)
  20. Tamayo T, Schipf S, Meisinger C, et al. (2014) Regional Differences of Undiagnosed Type 2 Diabetes and Prediabetes Prevalence Are Not Explained by Known Risk Factors. PLOS ONE 9: e113154
  21. Stöckl D, Rückert-Eheberg I-M, Heier M, et al. (2016) Regional Variability of Lifestyle Factors and Hypertension with Prediabetes and Newly Diagnosed Type 2 Diabetes Mellitus: The Population-Based KORA-F4 and SHIP-TREND Studies in Germany. PLOS ONE 11: e0156736
  22. Maier W, Holle R, Hunger M, et al. (2013) The impact of regional deprivation and individual socio-economic status on the prevalence of Type 2 diabetes in Germany. A pooled analysis of five population-based studies. Diabet Med 30: e78-e86
  23. Castillo-Reinado K, Maier W, Holle R, et al. (2020) Associations of area deprivation and urban/rural traits with the incidence of type 1 diabetes: analysis at the municipality level in North Rhine-Westphalia, Germany. Diabet Med 37: 2089-2097
  24. Auzanneau M, Lanzinger S, Bohn B, et al. (2018) Area Deprivation and Regional Disparities in Treatment and Outcome Quality of 29,284 Pediatric Patients With Type 1 Diabetes in Germany: A Cross-sectional Multicenter DPV Analysis. Diabetes Care 41: 2517-2525
  25. Kroll LE, Schumann M, Hoebel J, Lampert T (2017) Regionale Unterschiede in der Gesundheit–Entwicklung eines sozioökonomischen Deprivationsindex für Deutschland. Journal of Health Monitoring 2: 103-120
  26. Greiser E, Glaeske G (2013) Soziale und ökonomische Folgen nächtlichen Fluglärms im Umfeld des Flughafens Frankfurt/Main. Gesundheitswesen 75: 127-133
  27. Krämer U, Herder C, Sugiri D, et al. (2010) Traffic-Related Air Pollution and Incident Type 2 Diabetes: Results from the SALIA Cohort Study. Environ Health Perspect 118: 1273-1279
  28. Dendup T, Feng X, Clingan S, Astell-Burt T (2018) Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health 15: 78
  29. Eze IC, Hemkens LG, Bucher HC, et al. (2015) Association between Ambient Air Pollution and Diabetes Mellitus in Europe and North America: Systematic Review and Meta-Analysis. Environ Health Perspect 123: 381-389
  30. Paquet C, Coffee NT, Haren MT, et al. (2014) Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort. Health Place 28: 173-176
  31. Lucht SA, Hennig F, Matthiessen C, et al. (2018) Air Pollution and Glucose Metabolism: An Analysis in Non-Diabetic Participants of the Heinz Nixdorf Recall Study. Environ Health Perspect 126: 047001
  32. den Braver NR, Lakerveld J, Rutters F, Schoonmade LJ, Brug J, Beulens JWJ (2018) Built environmental characteristics and diabetes: a systematic review and meta-analysis. BMC Med 16: 12
  33. Kartschmit N, Sutcliffe R, Sheldon MP, et al. (2020) Walkability and its association with walking/cycling and body mass index among adults in different regions of Germany: a cross-sectional analysis of pooled data from five German cohorts. BMJ Open 10: e033941
  34. Kartschmit N, Sutcliffe R, Sheldon MP, et al. (2020) Walkability and its association with prevalent and incident diabetes among adults in different regions of Germany: results of pooled data from five German cohorts. BMC Endocr Disord 20: 7
  35. Tamayo T, Brinks R, Hoyer A, Kuß O, Rathmann W (2016) The Prevalence and Incidence of Diabetes in Germany: An Analysis of Statutory Health Insurance Data on 65 Million Individuals From the Years 2009 and 2010. Dtsch Arztebl Int 113: 177-182
  36. Jacobs E, Hoyer A, Brinks R, Kuss O, Rathmann W (2017) Burden of Mortality Attributable to Diagnosed Diabetes: A Nationwide Analysis Based on Claims Data From 65 Million People in Germany. Diabetes Care 40: 1703-1709
  37. Schmidt C, Reitzle L, Heidemann C, et al. (2021) Excess mortality in adults with documented diabetes in Germany: routine data analysis of all insurance claims in Germany 2013–2014. BMJ Open 11: e041508
  38. Nanayakkara N, Curtis AJ, Heritier S, et al. (2021) Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: systematic review and meta-analyses. Diabetologia 64: 275-287
  39. Lind M, Garcia-Rodriguez LA, Booth GL, et al. (2013) Mortality trends in patients with and without diabetes in Ontario, Canada and the UK from 1996 to 2009: a population-based study. Diabetologia 56: 2601-2608
  40. Chen L, Islam RM, Wang J, et al. (2020) A systematic review of trends in all-cause mortality among people with diabetes. Diabetologia 63: 1718-1735
  41. Lung TWC, Hayes AJ, Herman WH, Si L, Palmer AJ, Clarke PM (2014) A Meta-Analysis of the Relative Risk of Mortality for Type 1 Diabetes Patients Compared to the General Population: Exploring Temporal Changes in Relative Mortality. PLOS ONE 9: e113635
  42. Sandahl K, Nielsen LB, Svensson J, et al. (2017) Increased mortality in a Danish cohort of young people with Type 1 diabetes mellitus followed for 24 years. Diabet Med 34: 380-386
  43. Grauslund J (2010) Long-term mortality and retinopathy in type 1 diabetes. Acta Ophthalmol 88: 1-14
  44. Baumert J, Heidemann C, Reitzle L, Schmidt C (2021) Gesunde Lebensjahre bei Personen mit und ohne Diabetes in Deutschland. Journal of Health Monitoring 6: 46-53


Risikoscreening, Risikokommunikation und Präventionsverhaltensmaßnahmen (S. 16-24)
  1. Ernst JB, Arens-Azevêdo U, Bitzer B, Bosy-Westphal A, de Zwaan M, Egert S, Fritsche A, Gerlach S, Hauner H, Heseker H, Koletzko B, Müller-Wieland D, Schulze M, Virmani K, Watzl B, Buyken AE für Deutsche Adipositas-Gesellschaft, Deutsche Diabetes Gesellschaft und Deutsche Gesellschaft für Ernährung. Quantitative Empfehlung zur Zuckerzufuhr in Deutschland. Bonn, 2018
  2. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New Engl J Med. 2002;346(6):393-403.
  3. Nauck M, Gerdes C, Petersmann A, Müller-Wieland D, Müller UA, Freckmann G, Heinemann L, Schleicher E, Landgraf R. Definition, Klassifikation und Diagnostik des Diabetes mellitus: Update 2020. Diabetologie 2020; 15 (Suppl 1): S9–S17
  4. American Diabetes Association 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021 Jan;44(Suppl 1):S15-S33
  5. Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, McCarthy MI, Nolan JJ, Norris JM, Pearson ER, Philipson L, McElvaine AT, Cefalu WT, Rich SS, Franks PW. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020 Sep;63(9):1671-1693
  6. Kengne AP, Beulens JW, Peelen LM, Moons KG, van der Schouw YT, Schulze MB, et al. Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol 2014;2(1):19-29.
  7. Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke. DIfE – DEUTSCHER DIABETES-RISIKO-TEST®. Diabetologie 2020; 15 (Suppl 1): S266–S269
  8. FINDRISK – Test. Diabetologie 2020; 15 (Suppl 1): S264–S265
  9. Paprott R, Muhlenbruch K, Mensink GB, Thiele S, Schulze MB, Scheidt-Nave C, et al. Validation of the German Diabetes Risk Score among the general adult population: findings from the German Health Interview and Examination Surveys. BMJ Open Diabetes Res Care 2016;4(1):e000280
  10. Schuppenies A, Jacobey H, Bornstein S, Schwarz PEH. Ernährungs-Umschau 2006;53(10):386-389
  11. Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 2007;30(3):510-5.
  12. Muhlenbruch K, Ludwig T, Jeppesen C, Joost HG, Rathmann W, Meisinger C, et al. Update of the German Diabetes Risk Score and external validation in the German MONICA/KORA study. Diabetes Res Clin Pract 2014;104(3):459-66
  13. Muhlenbruch K, Paprott R, Joost HG, Boeing H, Heidemann C, Schulze MB. Derivation and external validation of a clinical version of the German Diabetes Risk Score (GDRS) including measures of HbA1c. BMJ Open Diabetes Res Care 2018;6(1):e000524.
  14. Paprott R, Mensink GBM, Schulze MB, Thiele S, Muhlenbruch K, Scheidt-Nave C, et al. Temporal changes in predicted risk of type 2 diabetes in Germany: findings from the German Health Interview and Examination Surveys 1997-1999 and 2008-2011. BMJ open 2017;7(7):e013058
  15. Gesetz zur Stärkung der Gesundheitsförderung und der Prävention vom 17. Juli 2015. Sect. Bundesgesetzblatt Jahrgang 2015 Teil I Nr.31.
  16. Bauer S, Geiger L, Niggemann R, Seidel J. Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2020, Berichtsjahr 2019
  17. Schempp N, Strippel H. Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2017, Berichtsjahr 2016
  18. Bauer S, Römer K, Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2018, Berichtsjahr 2017
  19. Bauer S, Römer K, Geiger L. Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2019, Berichtsjahr 2018
  20. Weinstein ND. Perceived probability, perceived severity, and health-protective behavior. Health Psychol 2000;19,65-74
  21. Weinstein ND. Unrealistic optimism about future life events. J Pers Soc Psychol 1980;39,806-820
  22. Heidemann C, Paprott R, Stühmann LM, Baumert J, Mühlenbruch K, Hansen S, Schiborn C, Zahn D, Gellert P, Scheid-Nave C. Perceived diabetes risk and related determinants in individuals with high actual diabetes risk: results from a nationwide population-based survey. BMJ Open Diab Res Care 2019;7:e000680
  23. Bandura A. Self-efficacy: toward a unifying theory of behavioral change. Psychol Rev 1977; 84,191-215
  24. Schiborn C, Schulze MB. Diabetesrisikoscores: Einsatz in der Diabetesprävention. Diabetologe 2020;16,226-233


Ernährung in der Diabetesprävention: Aspekte 2021/22 (S. 25-32)
  1. Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537-544.
  2. Uusitupa M, Louheranta A, Lindström J, et al. The Finnish Diabetes Prevention Study. Br J Nutr. 2000;83
  3. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403.
  4. Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289-297.
  5. Shirinzadeh M, Afshin-Pour B, Angeles R, Gaber J, Agarwal G. The effect of community-based programs on dia-betes prevention in low- and middle-income countries: a systematic review and meta-analysis. Global Health. 2019 Feb 1;15(1):10.
  6. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Ger-stein HC, Yusuf S, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial [published correction appears in Lancet. 2006 Nov 18;368(9549):1770]. Lancet. 2006;368(9541):1096-1105.
  7. Haw JS, Galaviz KI, Straus AN, Kowalski AJ, Magee MJ, Weber MB, Wei J, Narayan KMV, Ali MK. Long-term Sus-tainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern Med. 2017 Dec 1;177(12):1808-1817.
  8. Seral-Cortes M, De Miguel-Etayo P, Zapata P, Miguel-Berges ML, Moreno LA. Effectiveness and process evalua-tion in obesity and type 2 diabetes prevention programs in children: a systematic review and meta-analysis. BMC Public Health. 2021 Feb 12;21(1):348.
  9. Guo XY, Shu J, Fu XH, Chen XP, Zhang L, Ji MX, Liu XM, Yu TT, Sheng JZ, Huang HF. Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: a meta-analysis and meta-regression. BJOG. 2019 Feb;126(3):311-320.
  10. Pang B, Zhao LH, Li XL, Song J, Li QW, Liao X, Feng S, Zhao XY, Zheng YJ, Gou XW, Ni Q, Tong XL. Different inter-vention strategies for preventing type 2 diabetes mellitus in China: A systematic review and network meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018 Mar;20(3):718-722.
  11. Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endo-crinol. 2019;7(6):452-461.
  12. D.M. Nathan, E. Barrett-Connor, J.P. Crandall, S.L. Edelstein, R.B. Goldberg, E.S. Horton, et al. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complica-tions over 15-year follow-up: The Diabetes Prevention Program Outcomes Study Lancet Diabetes Endocrinol., 3 (11) (2015)
  13. Look AHEAD Research Group, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M, Crow RS, Curtis JM, Egan CM, Espeland MA, Evans M, Foreyt JP, Ghazarian S, Gregg EW, Harrison B, Hazuda HP, Hill JO, Horton ES, Hubbard VS, Jakicic JM, Jeffery RW, Johnson KC, Kahn SE, Kitabchi AE, Knowler WC, Lewis CE, Maschak-Carey BJ, Montez MG, Murillo A, Nathan DM, Patricio J, Peters A, Pi-Sunyer X, Pownall H, Reboussin D, Regensteiner JG, Rickman AD, Ryan DH, Safford M, Wadden TA, Wagenknecht LE, West DS, Williamson DF, Yanovski SZ. Cardiovas-cular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013 Jul 11;369(2):145-54.
  14. Glechner A, Keuchel L, Affengruber L, Titscher V, Sommer I, Matyas N, Wagner G, Kien C, Klerings I, Gartlehner G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim Care Dia-betes. 2018 Oct;12(5):393-408.
  15. Galaviz KI, Weber MB, Straus A, Haw JS, Narayan KMV, Ali MK. Global Diabetes Prevention Interventions: A Systematic Review and Network Meta-analysis of the Real-World Impact on Incidence, Weight, and Glucose. Diabetes Care. 2018 Jul;41(7):1526-1534.
  16. Wolfram G, Bechthold A, Boeing H, et al. Evidence-Based Guideline of the German Nutrition Society: Fat Intake and Prevention of Selected Nutrition-Related Diseases. Ann Nutr Metab. 2015;67(3):141-204.
  17. Neuenschwander M, Ballon A, Weber KS, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019;366:l2368. Published 2019 Jul 3.
  18. Ramsden CE, Zamora D, Majchrzak-Hong S, et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73). BMJ. 2016;353:i1246.
  19. Oh K, Hu FB, Manson JE, Stampfer MJ, Willett WC. Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses‘ health study. Am J Epidemiol. 2005;161(7):672-679.
  20. Meng Y, Bai H, Wang S, Li Z, Wang Q, Chen L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2017;131:124-131.
  21. Huntriss R, Campbell M, Bedwell C. The interpretation and effect of a low-carbohydrate diet in the manage-ment of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr. 2018;72(3):311-325.
  22. Neuenschwander M, Hoffmann G, Schwingshackl L, Schlesinger S. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Eur J Epidemiol. 2019;34(9):837-852.
  23. Suyoto PST. Effect of low-carbohydrate diet on markers of renal function in patients with type 2 diabetes: A meta-analysis. Diabetes Metab Res Rev. 2018;34(7):e3032.
  24. Goldenberg JZ, Day A, Brinkworth GD, Sato J, Yamada S, Jönsson T, Beardsley J, Johnson JA, Thabane L, Johnston BC. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. 2021 Jan 13;372:m4743.
  25. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34.
  26. De Lorgeril M, Salen P, Martin JL, et al. Effect of a mediterranean type of diet on the rate of cardiovascular complications in patients with coronary artery disease. Insights into the cardioprotective effect of certain nutri-ments. J Am Coll Cardiol. 1996;28(5):1103-1108.
  27. Schwingshackl L, Chaimani A, Hoffmann G, Schwedhelm C, Boeing H. A network meta-analysis on the compara-tive efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol. 2018;33(2):157-170.
  28. Schwingshackl L, Chaimani A, Schwedhelm C, et al. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: A systematic review and network meta-analysis. Crit Rev Food Sci Nutr. 2019;59(16):2674-2687.
  29. Neuenschwander M, Hoffmann G, Schwingshackl L, Schlesinger S. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Eur J Epidemiol. 2019;34(9):837-852.
  30. Weickert MO, Roden M, Isken F, Hoffmann D, Nowotny P, Osterhoff M, Blaut M, Alpert C, Gögebakan O, Bumke-Vogt C, Mueller F, Machann J, Barber TM, Petzke KJ, Hierholzer J, Hornemann S, Kruse M, Illner AK, Kohl A, Loeffelholz CV, Arafat AM, Möhlig M, Pfeiffer AF. Effects of supplemented isoenergetic diets differing in cere-al fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr. 2011 Aug;94(2):459-71.
  31. Honsek C, Kabisch S, Kemper M, Gerbracht C, Arafat AM, Birkenfeld AL, Dambeck U, Osterhoff MA, Weickert MO, Pfeiffer AFH. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia. 2018 Jun;61(6):1295-1305.
  32. Roberts S, Barry E, Craig D, Airoldi M, Bevan G, Greenhalgh T. Preventing type 2 diabetes: systematic review of studies of cost-effectiveness of lifestyle programmes and metformin, with and without screening, for pre-diabetes. BMJ Open. 2017 Nov 15;7(11):e017184.
  33. Matthias Blüher, Metabolically Healthy Obesity, Endocrine Reviews, Volume 41, Issue 3, June 2020, Pages 405–420
  34. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM, Almgren P, Wessman Y, Shaat N, Spégel P, Mulder H, Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark Å, Lahti K, Forsén T, Tuomi T, Rosengren AH, Groop L. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 May;6(5):361-369.
  35. Stidsen JV, Henriksen JE, Olsen MH, Thomsen RW, Nielsen JS, Rungby J, Ulrichsen SP, Berencsi K, Kahlert JA, Friborg SG, Brandslund I, Nielsen AA, Christiansen JS, Sørensen HT, Olesen TB, Beck-Nielsen H. Pathophysiology-based phenotyping in type 2 diabetes: A clinical classification tool. Diabetes Metab Res Rev. 2018 Jul;34(5):e3005.
  36. Zaharia OP, Strassburger K, Strom A, Bönhof GJ, Karusheva Y, Antoniou S, Bódis K, Markgraf DF, Burkart V, Müssig K, Hwang JH, Asplund O, Groop L, Ahlqvist E, Seissler J, Nawroth P, Kopf S, Schmid SM, Stumvoll M, Pfeiffer AFH, Kabisch
  37. S, Tselmin S, Häring HU, Ziegler D, Kuss O, Szendroedi J, Roden M; German Diabetes Study Group. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019 Sep;7(9):684-694.
  38. Wagner R, Heni M, Tabák AG, Machann J, Schick F, Randrianarisoa E, Hrabě de Angelis M, Birkenfeld AL, Stefan N, Peter A, Häring HU, Fritsche A. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021 Jan;27(1):49-57.
  39. Perreault L, Kahn SE, Christophi CA, Knowler WC, Hamman RF; Diabetes Prevention Program Research Group. Regression from pre-diabetes to normal glucose regulation in the diabetes prevention program. Diabetes Care. 2009 Sep;32(9):1583-8.
  40. DREAM Trial Investigators, Dagenais GR, Gerstein HC, Holman R, Budaj A, Escalante A, Hedner T, Keltai M, Lonn E, McFarlane S, McQueen M, Teo K, Sheridan P, Bosch J, Pogue J, Yusuf S. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: re-sults of the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabetes Care. 2008 May;31(5):1007-14.
  41. Hjorth MF, Bray GA, Zohar Y, Urban L, Miketinas DC, Williamson DA, Ryan DH, Rood J, Champagne CM, Sacks FM, Astrup A. Pretreatment Fasting Glucose and Insulin as Determinants of Weight Loss on Diets Varying in Mac-ronutrients and Dietary Fibers-The POUNDS LOST Study. Nutrients. 2019 Mar 11;11(3):586.
  42. Hjorth MF, Ritz C, Blaak EE, Saris WH, Langin D, Poulsen SK, Larsen TM, Sørensen TI, Zohar Y, Astrup A. Pre-treatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clini-cal trials. Am J Clin Nutr. 2017 Aug;106(2):499-505.
  43. Kabisch S, Meyer NMT, Honsek C, Gerbracht C, Dambeck U, Kemper M, Osterhoff MA, Birkenfeld AL, Arafat AM, Hjorth MF, Weickert MO, Pfeiffer AFH. Fasting Glucose State Determines Metabolic Response to Supple-mentation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients. 2019 Oct 6;11(10):2385.
  44. Stefan N, Staiger H, Wagner R, Machann J, Schick F, Häring HU, Fritsche A. A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia. 2015 Dec;58(12):2877-84.
  45. Kulzer B, Hermanns N, Gorges D, Schwarz P, Haak T. Prevention of diabetes self-management program (PREDI-AS): effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care. 2009;32(7):1143-1146.
  46. Fulgoni V 3rd, Drewnowski A. An Economic Gap Between the Recommended Healthy Food Patterns and Exist-ing Diets of Minority Groups in the US National Health and Nutrition Examination Survey 2013-14. Front Nutr. 2019 Apr 4;6:37.
  47. Fresán U, Martínez-González MA, Sabaté J, Bes-Rastrollo M. Global sustainability (health, environment and monetary costs) of three dietary patterns: results from a Spanish cohort (the SUN project). BMJ Open. 2019 Feb 21;9(2):e021541.
  48. Tong TYN, Imamura F, Monsivais P, Brage S, Griffin SJ, Wareham NJ, Forouhi NG. Dietary cost associated with adherence to the Mediterranean diet, and its variation by socio-economic factors in the UK Fenland Study. Br J Nutr. 2018 Mar;119(6):685-694.
  49. Zimorovat A, Mohammadi M, Ramezani-Jolfaie N, Salehi-Abargouei A. The healthy Nordic diet for blood glu-cose control: a systematic review and meta-analysis of randomized controlled clinical trials. Acta Diabetol. 2020;57(1):1-12.
  50. Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541-551.
  51. Mai K, Brachs M, Leupelt V, et al. Effects of a combined dietary, exercise and behavioral intervention and sym-pathetic system on body weight maintenance after intended weight loss: Results of a randomized controlled trial. Metabolism. 2018;83:60-67.
  52. Look AHEAD Research Group, Chao AM, Wadden TA, et al. Weight Change 2 Years After Termination of the Intensive Lifestyle Intervention in the Look AHEAD Study. Obesity (Silver Spring). 2020;28(5):893-901.
  53. Cardona-Morrell M, Rychetnik L, Morrell SL, Espinel PT, Bauman A. Reduction of diabetes risk in routine clini-cal practice: are physical activity and nutrition interventions feasible and are the outcomes from reference trials replicable? A systematic review and meta-analysis. BMC Public Health. 2010 Oct 29;10:653.
  54. Roberts S, Pilard L, Chen J, Hirst J, Rutter H, Greenhalgh T. Efficacy of population-wide diabetes and obesity prevention programs: An overview of systematic reviews on proximal, intermediate, and distal outcomes and a meta-analysis of impact on BMI. Obes Rev. 2019 Jul;20(7):947-963.
  55. Kabisch S et al. 2021; in revision


Bewegung während und nach der Pandemie in Deutschland (S. 33-41)
  1. Müller P, Ammar A, Zou L, Müller NG. COVID-19 and physical (in-)activity. Dtsch Z Sportmed. 2021; 72: 45-46. doi:10.5960/dzsm.2020.471
  2. Ruissen MM, Regeer H, Landstra CP, et al. Increased stress, weight gain and less exercise in relation to glycemic control in people with type 1 and type 2 diabetes during the COVID-19 pandemic. BMJ Open Diab Res Care 2021 ;9:e002035. doi:10.1136/bmjdrc-2020-002035
  3. Tison GH, Avram R, Kuhar P, Abreau S, Marcus GM, Pletcher MJ, Olgin JE. Worldwide Effect of COVID-19 on Physical Activity: A Descriptive Study. Ann Intern Med. 2020; 173: 767-770. doi:10.7326/M20-2665
  4. Balducci S, Coccia EM: Sedentariness and physical activity in type 2 diabetes during the COVID-19 pandemic. Diabetes/Metabolism Research and Reviews 2020; DOI: 10.1002/dmrr.3378
  5. Nieman DC. Coronavirus disease-2019: A tocsin to our aging, unfit, corpulent, and immunodeficient society. J Sport Health Sci 2020; 9:293_301.
  6. Sallis R, et al. Br J Sports Med 2021; 0:1–8. doi:10.1136/bjsports-2021-104080
  7. de Boer DR, Hoekstra F, Huetink KIM, Hoekstra T, Krops LA, Hettinga FJ: Physical Activity, Sedentary Behavior and Well-Being of Adults with Physical Disabilities and/or Chronic Diseases during the First Wave of the COVID-19 Pandemic: A Rapid Review. Int. J. Environ. Res. Public Health 2021; 18, 6342. https://doi.org/10.3390/ijerph18126342
  8. Prati G, Mancini AD: The psychological impact of COVID-19 pandemic lockdowns: a review and meta-analysis of longitudinal studies and natural experiments. Psychological Medicine 2021; 1–11. https://doi.org/10.1017/S0033291721000015
  9. Shah SZA, Karam JA, Zeb A, Ullah R, Shah A, Haq IU, Ali I, Darain H, Chen H. Movement is Improvement: The Therapeutic Effects of Exercise and General Physical Activity on Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Ther. 2021 Mar;12(3):707-732. doi: 10.1007/s13300-021-01005-1. Epub 2021 Feb 5. PMID: 33547579; PMCID: PMC7947168.
  10. Edward M. Phillips, Mary A. Kennedy American Academy of Physical Medicine and Rehabilitation Vol. 4, 818-825, November 2012 http://dx.doi.org/10.1016/j.pmrj.2012.09.582
  11. Geidl W, Schlesinger S, Mino E, Miranda L, Pfeifer K. Dose-response relationship between physical activity and mortality in adults with noncommunicable diseases: a systematic review and meta-analysis of prospective observational studies. Int J Behav Nutr Phys Act. 2020 Aug 26;17(1):109. doi: 10.1186/s12966-020-01007-5. PMID: 32843054; PMCID: PMC7448980.
  12. Christian H, Wood L, Nathan A, Kawachi I, Houghton S, Martin K, McCune S. The association between dog walking, physical activity and owner‘s perceptions of safety: cross-sectional evidence from the US and Australia. BMC Public Health. 2016 Sep 22;16(1):1010. doi: 10.1186/s12889-016-3659-
  13. Mičková E, Machová K, Daďová K, Svobodová I. Does Dog Ownership Affect Physical Activity, Sleep, and Self-Reported Health in Older Adults? Int J Environ Res Public Health. 2019 Sep 11;16(18):3355. doi: 10.3390/ijerph16183355. PMID: 31514379; PMCID: PMC6765935.
  14. Virtanen M, Jokela M, Lallukka T, Magnusson Hanson L, Pentti J, Nyberg ST, Alfredsson L, Batty GD, Casini A, Clays E, DeBacquer D, Ervasti J, Fransson E, Halonen JI, Head J, Kittel F, Knutsson A, Leineweber C, Nordin M, Oksanen T, Pietiläinen O, Rahkonen O, Salo P, Singh-Manoux A, Stenholm S, Suominen SB, Theorell T, Vahtera J, Westerholm P, Westerlund H, Kivimäki M. Long working hours and change in body weight: analysis of individual-participant data from 19 cohort studies. Int J Obes (Lond). 2020 Jun;44(6):1368-1375. doi: 10.1038/s41366-019-0480-3. Epub 2019 Nov 25. PMID: 31767974; PMCID: PMC7260128.
  15. Loh R, Stamatakis E, Folkerts D, Allgrove JE, Moir HJ. Effects of Interrupting Prolonged Sitting with Physical Activity Breaks on Blood Glucose, Insulin and Triacylglycerol Measures: A Systematic Review and Meta-analysis. Sports Med. 2020 Feb;50(2):295-330. doi: 10.1007/s40279-019-01183-w. PMID: 31552570; PMCID: PMC6985064.
  16. Duvivier BM, Schaper NC, Hesselink MK, van Kan L, Stienen N, Winkens B, Koster A, Savelberg HH. Breaking sitting with light activities vs structured exercise: a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes. Diabetologia. 2017 Mar;60(3):490-498. doi: 10.1007/s00125-016-4161-7. Epub 2016 Nov 30. PMID: 27904925; PMCID: PMC6518091.
  17. Dorling JL, Höchsmann C, Tudor-Locke C, Beyl R, Martin CK. Effect of an office-based intervention on visceral adipose tissue: the WorkACTIVE-P randomized controlled trial. Appl Physiol Nutr Metab. 2021 Feb;46(2):117-125. doi: 10.1139/apnm-2020-0175. Epub 2021 Jan 15. PMID: 33451268
  18. Jenkins DW, Jenks A. Hiking with Diabetes Risk and Benefits. J Am Podiatr Med Assoc. 2017 Sep;107(5):382-392. doi: 10.7547/15-219. PMID: 29077490.
  19. Searle A, Ranger E, Zahra J, Tibbitts B, Page A, Cooper A. Engagement in e-cycling and the self-management of type 2 diabetes: a qualitative study in primary care. BJGP Open. 2019 Jul 23;3(2):bjgpopen18X101638. doi: 10.3399/bjgpopen18X101638. PMID: 31366669; PMCID: PMC6662872.
  20. Ravens-Sieberer U, Kaman A, Otto C, Adedeji A, Devine J, Erhart M, Napp AK, Becker M, Blanck-Stellmacher U, Löffler C, Schlack R, Hurrelmann K: Psychische Gesundheit und Lebensqualität von Kindern und Jugendlichen während der COVID-19-Pandemie – Ergebnisse der COPSY-Studie; Dtsch Arztebl Int; 2020; 117: 828-9; DOI: 10.3238/arztebl; 2020.0828
  21. Breuer C, Joisten C, Schmidt W (Hrsg.): Vierter Kinder- und Jugendssportbericht – Gesundheit, Leistung, Gesellschaft; Deutscher Bundestag Ausschussdrucksache 19(5)313; 2020, ISBN 978-3-7780-9180-7
  22. Schmidt S C E, Anedda B, Burchartz A, Eichsteller A, Kolb S, Mnich C, Niessner C, Oriwol D, Worth A, Woll A; Physical Activity and Screen Time of Children and Adolescents before and during the COVID-19 Lockdown in Germany: A Natural Experiment. Scientific Reports 2020.
  23. Rütten A, Pfeifer K (Hrsg.): Nationale Empfehlungen für Bewegung und Bewegungsförderung. https://www.sport.fau.de/files/2016/05; Zugriff: 25.05.2019
  24. American Diabetes Association (2020) Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes. Diabetes Care 43 (Supplement 1): S48-S65; doi: 10.2337/dc20-S005
  25. Krug S, Finger JD, Lange C, Richter A, Mensink GMB: Sport- und Ernährungsverhalten bei Kindern und Jugendlichen in Deutschland – Querschnittergebnisse aus KiGGS Welle 2 und Trends, Journal of Health Monitoring; 2018 3(2) DOI 10.17886/RKI-GBE-2018-065 Robert Koch-Institut, Berlin
  26. Krug S, Jordan S, Mensink GBM, Müters S, Finger JD, Lampert T: Körperliche Aktivität – Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1); 2013


Adipositas in Deutschland aus Sicht der DDG und der DAG (S. 42-47)
  1. OECD. The Heavy Burden of Obesity; 2019
  2. Rebscher, H (Hrsg): DAK-Versorgungsreport Adipositas (2016) https://www.dak.de/dak/download/versorgungsreport-adipositas-pdf-2073766.pdf
  3. Effertz T, Engel S, Verheyen F et al. The costs and consequences of obesity in Germany: a new approach from a prevalence and life-cycle perspective. Eur J Health Econ 2016; 17: 1141-1158
  4. Obesity WHOCo, World Health O. Obesity : preventing and managing the global epidemic : report of a WHO consultation. In. Geneva: World Health Organization; 2000
  5. WHO European Ministerial Conference on Counteracting Obesity; 2006: https://www.euro.who.int/__data/assets/pdf_file/0006/96459/E90143.pdf
  6. MDS Begutachtungsleitfaden Adipositas 2017: https://www.mds-ev.de/uploads/media/downloads/BGL_Adipositas_Chirurgie_Stand_2017-10-06_fV.pdf
  7. Bundesgesundheitsministerium: „Stellungnahme zum DMP Adipositas“ (Oktober 2020)
  8. Referentenentwurf des BMG für das Gesetz zur Weiterentwicklung der Gesundheitsversorgung (GVWG) vom 23.10.2020
  9. DAG-Pressemeldung: https://adipositas-gesellschaft.de/g-ba-mit-dmp-adipositas-beauftragt/
  10. DDG-Pressemeldung: https://www.deutsche-diabetes-gesellschaft.de/presse/bundestag-beraet-ueber-dmp-adipositas-ddg-begruesst-dies-als-teil-der-nationalen-diabetesstrategie-nds-und-bietet-unterstuetzung-an


Immunologie des Typ-1-Diabetes: ein Update (S. 48-56)
  1. Ziegler, A.G. and G.T. Nepom, Prediction and pathogenesis in type 1 diabetes. Immunity, 2010. 32(4): p. 468-78.
  2. Ziegler, A.G., et al., Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA, 2020. 323(4): p. 339-351.
  3. Ziegler, A.G., et al., Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA, 2013. 309(23): p. 2473-9.
  4. Serr, I., et al., miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A, 2016. 113(43): p. E6659-E6668.
  5. Serr, I., et al., A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Sci Transl Med, 2018. 10(422).
  6. Serr, I., et al., Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice. Nat Commun, 2016. 7: p. 10991.
  7. Scherm, M.G., et al., miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nat Commun, 2019. 10(1): p. 5697.
  8. Scherm, M.G. and C. Daniel, miRNA Regulation of T Cells in Islet Autoimmunity and Type 1 Diabetes. Curr Diab Rep, 2020. 20(9): p. 41.
  9. Scherm, M.G. and C. Daniel, miRNA-Mediated Immune Regulation in Islet Autoimmunity and Type 1 Diabetes. Front Endocrinol (Lausanne), 2020. 11: p. 606322.
  10. Scherm, M.G., et al., The role of T cell miRNAs for regulatory T cell induction in islet autoimmunity. Mol Metab, 2019. 27S: p. S122-S128.
  11. Sims, E.K., et al., Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med, 2021. 13(583).


Betazellersatztherapie für Patienten mit Diabetes – aktueller Stand 2022 und Perspektiven (S. 57-61)
  1. Gruessner RWG, Gruessner AC. The current state of pancreas transplantation. Nat Rev Endocrinol. 2013 Sep;9(9):555–62.
  2. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care. 2012 Jul;35(7):1436–45.
  3. Niclauss N, Morel P, Berney T. Has the gap between pancreas and islet transplantation closed? Transplantation. 2014 Sep 27;98(6):593–9.
  4. Bassi R, Fiorina P. Impact of islet transplantation on diabetes complications and quality of life. Curr Diab Rep. 2011 Oct;11(5):355–63.
  5. Thompson DM, Meloche M, Ao Z, Paty B, Keown P, Shapiro RJ, et al. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation. 2011 Feb 15;91(3):373–8.
  6. Speight J, Woodcock AJ, Reaney MD, Amiel SA, Johnson P, Parrott N, et al. Well, I Wouldn’t be Any Worse Off, Would I, Than I am Now? A Qualitative Study of Decision-Making, Hopes, and Realities of Adults With Type 1 Diabetes Undergoing Islet Cell Transplantation. Transplant Direct [Internet]. 2016 Apr 21 [cited 2021 Jun 10];2(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946514/
  7. Gruessner AC, Sutherland DER, Gruessner RWG. Long-term outcome after pancreas transplantation. Curr Opin Organ Transplant. 2012 Feb;17(1):100–5.
  8. Sollinger HW, Odorico JS, Becker YT, D’Alessandro AM, Pirsch JD. One thousand simultaneous pancreas-kidney transplants at a single center with 22-year follow-up. Ann Surg. 2009 Oct;250(4):618–30.
  9. Lehmann R, Graziano J, Brockmann J, Pfammatter T, Kron P, de Rougemont O, et al. Glycemic Control in Simultaneous Islet-Kidney Versus Pancreas-Kidney Transplantation in Type 1 Diabetes: A Prospective 13-Year Follow-up. Diabetes Care. 2015 May;38(5):752–9.
  10. Kandaswamy R, Sutherland DER. Pancreas versus islet transplantation in diabetes mellitus: How to allocate deceased donor pancreata? Transplant Proc. 2006 Mar;38(2):365–7.
  11. Robertson P, Davis C, Larsen J, Stratta R, Sutherland DER, American Diabetes Association. Pancreas transplantation in type 1 diabetes. Diabetes Care. 2004 Jan;27 Suppl 1:S105.
  12. Ryan EA, Shandro T, Green K, Paty BW, Senior PA, Bigam D, et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes. 2004 Apr;53(4):955–62.
  13. Senior PA, Bellin MD, Alejandro R, Yankey JW, Clarke WR, Qidwai JC, et al. Consistency of quantitative scores of hypoglycemia severity and glycemic lability and comparison with continuous glucose monitoring system measures in long-standing type 1 diabetes. Diabetes Technol Ther. 2015 Apr;17(4):235–42.
  14. Clinical Islet Transplantation Study (CIT) [Internet]. [cited 2021 Feb 11]. Available from: https://www.isletstudy.org/
  15. O’Connell PJ, Holmes-Walker DJ, Goodman D, Hawthorne WJ, Loudovaris T, Gunton JE, et al. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. Am J Transplant. 2013 Jul;13(7):1850–8.
  16. Brooks AM, Walker N, Aldibbiat A, Hughes S, Jones G, de Havilland J, et al. Attainment of metabolic goals in the integrated UK islet transplant program with locally isolated and transported preparations. Am J Transplant. 2013 Dec;13(12):3236–43.
  17. Choudhary P, Rickels MR, Senior PA, Vantyghem M-C, Maffi P, Kay TW, et al. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care. 2015 Jun;38(6):1016–29.
  18. Speight J, Reaney MD, Woodcock AJ, Smith RM, Shaw J a. M. Patient-reported outcomes following islet cell or pancreas transplantation (alone or after kidney) in Type 1 diabetes: a systematic review. Diabet Med. 2010 Jul;27(7):812–22.
  19. Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol. 2020 Sep;16(9):506–18.
  20. Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2017 May;16(5):338–50.
  21. Hendriks WT, Warren CR, Cowan CA. Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions. Cell Stem Cell. 2016 Jan 7;18(1):53–65.
  22. Dayan CM, Korah M, Tatovic D, Bundy BN, Herold KC. Changing the landscape for type 1 diabetes: the first step to prevention. Lancet. 2019 Oct 5;394(10205):1286–96.


COVID-19-Pandemie: Auswirkungen auf die Inzidenz des Typ-1-Diabetes bei Kindern und Jugendlichen (S. 62-70)
  1. Marchand L, Pecquet M, Luyton C. Type 1 diabetes onset triggered by COVID-19. Acta Diabetologica 2020; 57: 1265-1266.
  2. Hollstein T, Schulte DM, Schulz J, et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nature Metabolism 2020; 2: 1021-1024.
  3. Hollstein T. SARS-CoV-2 und Diabetes-Pathogenese: COVIDIAB-Register startet. Dtsch Arztebl 2020; 117(44), Supplement 2/2020: 8-9.
  4. Chee YJ, Huey Ng SJ, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Research and Clinical Practice 2020; 164: 108166.
  5. Venkatesh N, Astbury N, Thomas MC, et al. Severe acute respiratory syndrome coronavirus 2 as a potential cause of type 1 diabetes facilitated by spike protein receptor binding domain attachment to human islet cells: An illustrative case study and experimental data. Diabet Med . 2021; e14608.
  6. Alizadeh F, O’Halloran A, Alghamdi A, et al.: Toddler with new onset diabetes and atypical hemolytic uremic syndrome in the setting of COVID-19. Pediatrics 2020: e2020016774.
  7. Wang J, Miao D, Babu S, et al.: Prevalence of autoantibody-negative diabetes is not rare at all ages and increases with older age and obesity. The Journal of Clinical Endocrinology & Meta bolism 2007; 92: 88-92.
  8. Kamrath C, Rosenbauer J, Tittel SR, et al. Frequency of Autoantibody-Negative Type 1 Diabetes in Children, Adolescents, and Young Adults During the First Wave of the COVID-19 Pandemic in Germany. Diabetes Care 2021; 44: 1540-1546.
  9. Lönnrot M, Lynch KF, Larsson HE, et al. Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia 2017; 60: 1931–1940.
  10. Ruiz PLD, Tapia G, Bakken IJ, et al. Pandemic influenza and subsequent risk of type 1 diabetes: a nationwide cohort study. Diabetologia 2018; 61: 1996–2004.
  11. Rubino F, Amiel S, Zimmet P, et al. New-onset diabetes in Covid-19. N Engl J Med 2020; 383: 789-790.
  12. Caruso P, Longo M, Esposito K, Maiorino MI. Type 1 diabetes triggered by covid-19 pandemic: A potential outbreak? Diabetes Research and Clinical Practice 2020; 164: 108219.
  13. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280.e8.
  14. Benton DJ, Wrobel AG, Xu P, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020; 588, 327–330.
  15. Müller JA, Groß R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021; 3: 149-165.
  16. Fignani D, Licata G, Brusco N, et al. SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Front Endocrinol (Lausanne). 2020; 11:596898.
  17. Shi TT, Yang FY, Liu C, et al. Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic b-cells. Biochemical and Biophysical Research Communications 2018; 495: 860-866.
  18. Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model Virus infection in human cells and organoids. Cell Stem Cell 2020; 27: 125-136.
  19. Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020; 370: 856-860.
  20. Coate KC, Cha J, Shrestha S, et al. SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells. Cell Metab 2020; 32: 1028-1040.
  21. Kusmartseva I, Wu W, Syed F, et al. Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metab. 2020; 32: 1041-1051.
  22. Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8, 546–550.
  23. Accili D. Can COVID-19 cause diabetes? Nature Metabolism 2021; 3: 123–125.
  24. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020; 383: 334-346.
  25. DiMeglio LA. COVID-19 and Type 1 Diabetes: Addressing Concerns and Maintaining Control. Diabetes Care 2021;44:1-5.
  26. Filippi CM, von Herrath MG. Viral trigger for type 1 diabetes: pros and cons. Diabetes 2008; 57: 2863–2871.
  27. Knip M, Simmel, O. Environmental Triggers of Type 1 Diabetes. Cold Spring Harb Perspect Med 2012; 2: a007690.
  28. Rodriguez-Calvo T, Sabouri S, Anquetil F, von Herrath MG. The viral paradigm in type 1 diabetes: Who are the main suspects? Autoimmun Rev. 2016; 15: 964-969.
  29. Lee J. Mental health effects of school closures during COVID-19. Lancet Child Adolesc Health 2020; 4: 421.
  30. Brooks SK, Webster K, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 2020; 395: 912-920.
  31. Francisco R, Pedro M, Delvecchio E. Psychological Symptoms and Behavioral Changes in Children and Adolescents During the Early Phase of COVID-19 Quarantine in Three European Countries. Psychiatry 2020; 11:570164.
  32. Loades ME, Chatburn E; Higson-Sweeney N. Rapid Systematic Review: The Impact of Social Isolation and Loneliness on the Mental Health of Children and Adolescents in the Context of COVID-19. J Am Acad Child Adolesc Psychiatry 2020; 59: 1218-1239.
  33. Ghosh R, Dubey MJ, Chatterjee S, Dubey S, Impact of COVID -19 on children: special focus on the psychosocial aspect. Minerva Pediatr 2020; 72: 226-235.
  34. Sharif K, Watad A, Coplan L, et al. Psychological stress and type 1 diabetes mellitus: what is the link? Expert Rev Clin Immunol 2018; 14: 1081-1088.
  35. Sepa A, Ludvigsson J. Psychological Stress and the Risk of Diabetes-Related Autoimmunity: A Review Article. Neuroimmunomodulation 2006; 13: 301-308.
  36. Stojanovich L. Stress and autoimmunity. Autoimmunity Reviews 2010; 9: A271-A276.
  37. Kruizinga MD, Peeters D, van Veen M, et al. The impact of lockdown on pediatric ED visits and hospital admissions during the COVID19 pandemic: a multicenter analysis and review of the literature. Eur J Pediatr. 2021;1180: 2271-2279.
  38. Kuitunen I, Artama M, Mäkelä L, et al. Effect of Social Distancing Due to the COVID-19 Pandemic on the Incidence of Viral Respiratory Tract Infections in Children in Finland During Early 2020. Pediatr Infect Dis J. 2020; 39: e423-e427.
  39. Unsworth R, Wallace S, Oliver NS, et al. New-Onset Type 1 Diabetes in Children During COVID-19: Multicenter Regional Findings in the U.K.. Diabetes Care 2020; 43: e170-e171.
  40. Rabbone I, Schiaffini R, Cherubini V, et al. Has COVID-19 delayed the diagnosis and worsened the presentation of Type 1 diabetes in children? Diabetes Care 2020; 43: 2870-2872.
  41. Tittel SR, Rosenbauer J, Kamrath C, et al. Did the COVID-19 Lockdown Affect the Incidence of Pediatric Type 1 Diabetes in Germany? Diabetes Care 2020; 43: e172-e173.
  42. Zubkiewicz-Kucharska A, Seifert M, Stepkowski M, Noczynska A. Diagnosis of type 1 diabetes during the SARS-CoV-2 pandemic: Does lockdown affect the incidence and clinical status of patients? Adv Clin Exp Med 2021; 30: 127–134.
  43. Lawrence C, Seckold R, Smart C et al. Increased paediatric presentations of severe diabetic ketoacidosis in an Australian tertiary centre during the COVID-19 pandemic. Diabetic Medicine 2021;38: e14417.
  44. Atlas G, Rodrigues F, Moshage Y, et al. Presentation of paediatric type 1 diabetes in Melbourne, Australia during the initial stages of the COVID-19 pandemic. Journal of Paediatrics and Child Health 2020; 56: 1654-1662.
  45. Salmi H, Heinonen S, Hästbacka J, et al. New-onset type 1 diabetes in Finnish children during the COVID-19 pandemic. Arch Dis Child 2021; 0: 1-6, doi: 10.1136/archdischild-2020-321220.
  46. Parviainen A, But A, Siljander H, Knip M, and the Finnish Pediatric Diabetes Register. Decreased incidence of type 1 diabetes in young Finnish children. Diabetes Care 2020; 43: 2953-2958.
  47. Kamrath C, Rosenbauer J, Eckert A, et al. Incidence of Type 1 Diabetes in Children and Adolescents during the Covid-19 Pandemic in Germany: Results from the DPV registry. Horm Res Paediatr 2021; 94 (Suppl. 1): 76 (P1-21) https://abstracts.eurospe.org/hrp/0094/hrp0094p1-21
  48. Boddu SK, Aurangabadkar G, Kuchay MS. New onset diabetes, type 1 diabetes and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2020; 14 :2211-2217.


Ketoazidose bei Manifestation des Typ-1-Diabetes bei Kindern und Jugendlichen während der COVID-19-Pandemie (S. 71-76)
  1. Segerer H, Wurm M, Grimsmann JM, Karges B, Neu A, Sindichakis M, Warncke K, Dost A, Holl RW. Diabetic Ketoacidosis at Manifestation of Type 1 Diabetes in Childhood and Adolescence—Incidence and Risk Factors. Dtsch Arztebl Int. 2021 Jun 4;118(22): 367-372. arztebl.m2021.0133. doi: 10.3238/arztebl.m2021.0133.
  2. Livingstone SJ, Levin D, Looker HC, Lindsay RS, Wild SH, Joss N, Leese G, Leslie P, McCrimmon RJ, Metcalfe W, McKnight JA, Morris AD, Pearson DW, Petrie JR, Philip S, Sattar NA, Traynor JP, Colhoun HM; Scottish Diabetes Research Network epidemiology group; Scottish Renal Registry. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA. 2015 Jan 6;313(1):37-44. doi: 10.1001/jama.2014.16425. PMID: 25562264; PMCID: PMC4426486.
  3. Bowden SA, Duck MM, Hoffman RP (2008) Young children (<5 yr) and adolescents (>12 yr) with type 1 diabetes mellitus have low rate of partial remission: diabetic ketoacidosis is an important risk factor. Pediatr Diabetes 9 (3 Pt 1):197-201. doi: 10.1111/j.1399-5448.2008.00376
  4. Duca LM, Reboussin BA, Pihoker C, Imperatore G, Saydah S, Mayer-Davis E, Rewers A, Dabelea D (2019) Diabetic ketoacidosis at diagnosis of type 1 diabetes and glycemic control over time: The SEARCH for diabetes in youth study. Pediatr Diabetes 20(2):172-179. doi: 10.1111/pedi.12809
  5. Cameron FJ, Scratch SE, Nadebaum C, Northam EA, Koves I, Jennings J, Finney K, Neil JJ, Wellard RM, Mackay M, Inder TE; DKA Brain Injury Study Group (2014) Neurological consequences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care 37(6):1554-62. doi: 10.2337/dc13-1904.
  6. Bui H, To T, Stein R, Fung K, Daneman D (2010) Is diabetic ketoacidosis at disease onset a result of missed diagnosis? J Pediatr 156(3):472–477
  7. Cherubini V, Grimsmann JM, Åkesson K, Birkebæk NH, Cinek O, Dovč K, Gesuita R, Gregory JW, Hanas R, Hofer SE, Holl RW, Jefferies C, Joner G, King BR, Mayer-Davis EJ, Peña AS, Rami-Merhar B, Schierloh U, Skrivarhaug T, Sumnik Z, Svensson J, Warner JT, Bratina N, Dabelea D. (2020) Temporal trends in diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes between 2006 and 2016: results from 13 countries in three continents. Diabetologia 63(8):1530-1541. doi: 10.1007/s00125-020-05152-1
  8. Robert Koch Institut, Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19) 20.08.2020 – aktualisiert für Deutschland, Website: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-08-20-de.pdf?__blob=publicationFile, abgerufen 11.9.2020
  9. Lynn RM, Avis JL, Lenton S, Amin-Chowdhury Z, Ladhani SN (2020) Delayed access to care and late presentations in children during the COVID-19 pandemic: a snapshot survey of 4075 paediatricians in the UK and Ireland. Arch Dis Child 25:archdischild-2020-319848. doi: 10.1136/archdischild-2020-319848. Epub ahead of print
  10. Lazzerini M, Barbi E, Apicella A, Marchetti F, Cardinale F, Trobia G (2020) Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health 4(5):e10-e11. doi:10.1016/S2352-4642(20)30108-5
  11. International Society of Pediatric and Adolescent Diabetes (ISPAD) (2020) Summary of recommendations regarding COVID-19 in children with diabetes: Keep Calm and Mind your Diabetes Care and Public Health Advice. Pediatr Diabetes 21(3):413-414. doi:10.1111/pedi.13013
  12. Kamrath C, Mönkemöller K, Biester T, Rohrer TR, Warncke K, Hammersen J, Holl RW (2020) Ketoacidosis in Children and Adolescents With Newly Diagnosed Type 1 Diabetes During the COVID-19 Pandemic in Germany. JAMA Aug 25;324(8):801-804. doi: 10.1001/jama.2020.13445
  13. Tittel SR, Rosenbauer J, Kamrath C, Ziegler J, Reschke F, Hammersen J, Mönkemöller K, Pappa A, Kapellen T, Holl RW; DPV Initiative. Did the COVID-19 Lockdown Affect the Incidence of Pediatric Type 1 Diabetes in Germany? Diabetes Care. 2020 Nov;43(11):e172- e173. doi: 10.2337/dc20-1633. Epub 2020 Aug 21. PMID: 32826282; PMCID: PMC7576433
  14. Kamrath C, Rosenbauer J, Eckert AJ, Pappa A, Reschke F, Rohrer TR, Mönkemöller K, Wurm M, Hake K, Raile K, Holl RW. Incidence of COVID-19 and Risk of Diabetic Ketoacidosis in New-Onset Type 1 Diabetes. Pediatrics. 2021 May 19:e2021050856. doi: 10.1542/peds.2021-050856. Epub ahead of print. PMID: 34011636.
  15. Mönkemöller K, Kamrath C, Hammersen J, Biester T, Warncke K, Pappa A, Fink K, Raile K, Rohrer TR, Holl RW; DPV Initiative. Kann die Ketoacidose bei pädiatrischen Patienten mit Manifestation eines Diabetes mellitus Typ 1 vermieden werden? Lehren aus der COVID-19-Pandemie. Monatsschr Kinderheilkd. 2021 Jan 8:1-8. German. doi: 10.1007/s00112-020-01108-2. Epub ahead of print. PMID: 33437098; PMCID: PMC7791
  16. Mortensen HB, Swift PG, Holl RW, Hougaard P, Hansen L, Bjoerndalen H, de Beaufort CE, Knip M; Hvidoere Study Group on Childhood Diabetes (2010) Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis. Pediatr Diabetes Jun;11(4):218-26. doi: 10.1111/j.1399-5448.2009.00566.
  17. Aye T, Mazaika PK, Mauras N, Marzelli MJ, Shen H, Hershey T, Cato A, Weinzimer SA, White NH, Tsalikian E, Jo B, Reiss AL; Diabetes Research in Children Network (DirecNet) Study Group (2019) Impact of Early Diabetic Ketoacidosis on the Developing Brain. Diabetes Care 42(3):443-449. doi: 10.2337/dc18-1405
  18. Cameron FJ, Scratch SE, Nadebaum C, Northam EA, Koves I, Jennings J, Finney K, Neil JJ, Wellard RM, Mackay M, Inder TE; DKA Brain Injury Study Group (2014) Neurological consequences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care 37(6):1554-62. doi: 10.2337/dc13-1904.


DiaLife: Strukturierte Schulung für Angehörige (S. 77-83)
  1. Borgmann, L-S., Rattay, P., & Lampert, T. (2017). Soziale Unterstützung als Ressource für Gesundheit in Deutschland. Journal of Health Monitoring, 2(4).
  2. Kulzer, B., Lüthgens, B., Landgraf, R., Krichbaum, M., Hermanns, N. (2017). Wie belastend erleben Angehörige den Diabetes? Deutsche Stichprobe der internationalen DAWN-2TM-Studie. Diabetologe, 13, 570-580.
  3. Fabisch, G., Hecht, L. (2018). Selbstmanagement bei Diabetes: Soziales Umfeld ist wichtig. In: Pflegezeitschrift 2018, Jg. 71, Heft 5, S. 50-52.
  4. Kovacs, B. K., Nicolucci, A., Holt, R. I., Willaing, I., Hermanns, N., Kalra, S., & Peyrot, M. (2013). Diabetes Attitudes, Wishes and Needs second study (DAWN2™): cross-national benchmarking indicators for family members living with people with diabetes. Diabetic medicine: A journal of the British Diabetic Association, 30 (7), 778-788.
  5. Bundesamt für soziale Sicherheit. Anhang 2 – Schulungsprogramme für Patientinnen und Patienten. Verfügbar unter: https://www.bundesamtsozialesicherung.de/de/themen/disease-management-programme/ueberblick/
  6. VDBD (Hrsg.). DiaLife – zusammen leben mit Diabetes. Schulungsprogramm für Angehörige (Version Typ 1 und Version Typ 2). 1. Auflage 2018. Verlag Kirchheim.
  7. Haller, N., Kulzer, B. (2018): Diabetesschulung. In: Deutscher Gesundheitsbericht Diabetes 2018, 57-63.
  8. Bernard, M.; Müller, N.; Hecht, L.; Fabisch, G.; Harder, A.; Luck-Sikorski, C. (2019): Efficacy of DiaLife, an education program for relatives of adult patients with diabetes - study protocol of a cluster randomized controlled trial. Trials 20 (1), S. 523. DOI: 10.1186/s13063-019-3600-4.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704511/


Krise als Chance – telemedizinische Optionen (S. 84-89)
  1. AG Telemedizin der Bundesärztekammer. Telemedizinische Methoden in der Patientenversorgung – Begriffliche Verortung, 2015 2015 Mar 20. Available from https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/Telemedizin_Telematik/Telemedizin/Telemedizinische_Methoden_in_der_Patientenversorgung_Begriffliche_Verortung.pdf. Accessed 23 August 2021
  2. Deutsche Diabetes Gesellschaft (DDG). Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter. Aktualisierung 2015: S3-Leitlinie der DDG und AGPD 2015 AWMF-Registernummer 057–016
  3. DPV-Initiative. DPV-Benchmarking Vergleichsauswertung: Behandlungsjahr 2020 pädiatrische Diabetologie, 2021
  4. Sengbusch S von, Eisemann N, Mueller-Godeffroy E, Lange K, Doerdelmann J, Erdem A et al. Outcomes of monthly video consultations as an add-on to regular care for children with type 1 diabetes: A 6-month quasi-randomized clinical trial followed by an extension phase. Pediatric diabetes 2020;21:1502–15
  5. Reid MW, Krishnan S, Berget C, Cain C, Thomas JF, Klingensmith GJ et al. CoYoT1 Clinic: Home Telemedicine Increases Young Adult Engagement in Diabetes Care. Diabetes technology & therapeutics 2018;20:370–9
  6. Crossen SS, Marcin JP, Qi L, Sauers-Ford HS, Reggiardo AM, Chen ST et al. Home Visits for Children and Adolescents with Uncontrolled Type 1 Diabetes. Diabetes technology & therapeutics 2020;22:34–41
  7. Bakhach M, Reid MW, Pyatak EA, Berget C, Cain C, Thomas JF et al. Home Telemedicine (CoYoT1 Clinic): A Novel Approach to Improve Psychosocial Outcomes in Young Adults With Diabetes. The Diabetes educator 2019;45:420–30
  8. Kirzhner A, Zornitzki T, Ostrovsky V, Knobler H, Schiller T. Is Telemedicine the Preferred Visit Modality in Patients with Type 1 Diabetes? Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association 2021
  9. Sengbusch S von, Doerdelmann J, Lemke S, Lange K, Hiort O, Katalinic A et al. Parental expectations before and after 12-month experience with video consultations combined with regular outpatient care for children with type 1 diabetes: a qualitative study. Diabetic medicine : a journal of the British Diabetic Association 2020:e14410
  10. Frielitz F-S, Dördelmann J, Lemke S, Lange K, Hiort O, Katalinic A et al. Assessing the benefits and challenges of video consultations for the treatment of children with type 1 diabetes – A qualitative study among diabetes professionals. Exp Clin Endocrinol Diabetes 2020
  11. Crossen S, Raymond J, Neinstein A. Top 10 Tips for Successfully Implementing a Diabetes Telehealth Program. Diabetes technology & therapeutics 2020;22:920–8
  12. Phillip M, Bergenstal RM, Close KL, Danne T, Garg SK, Heinemann L et al. The Digital/Virtual Diabetes Clinic: The Future Is Now-Recommendations from an International Panel on Diabetes Digital Technologies Introduction. Diabetes technology & therapeutics 2021;23:146–54
  13. Sarteau AC, Souris KJ, Wang J, Ramadan AA, Addala A, Bowlby D et al. Changes to care delivery at nine international pediatric diabetes clinics in response to the COVID-19 global pandemic. Pediatric diabetes 2021;22:463–8
  14. Lee JM, Carlson E, Albanese-O’Neill A, Demeterco-Berggren C, Corathers SD, Vendrame F et al. Adoption of Telemedicine for Type 1 Diabetes Care During the COVID-19 Pandemic. Diabetes technology & therapeutics 2021
  15. March CA, Flint A, DeArment D, Gilliland A, Kelly K, Rizzitano E et al. Paediatric diabetes care during the COVID-19 pandemic: Lessons learned in scaling up telemedicine services. Endocrinology, diabetes & metabolism 2020:e00202


Diabetes und Augenerkrankungen (S. 90-102)
  1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. The New England journal of medicine. 2015;373(3):232-42.
  2. Hammes HP, Welp R, Kempe HP, Wagner C, Siegel E, Holl RW, et al. Risk Factors for Retinopathy and DME in Type 2 Diabetes-Results from the German/Austrian DPV Database. PloS one. 2015;10(7):e0132492.
  3. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010. Diabetes care. 2016;39(9):1643-9.
  4. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. The New England journal of medicine. 2016;375(19):1834-44.
  5. Ponto KA, Koenig J, Peto T, Lamparter J, Raum P, Wild PS, et al. Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia. 2016;59(9):1913-9.
  6. Schorr SG, Hammes HP, Muller UA, Abholz HH, Landgraf R, Bertram B. The Prevention and Treatment of Retinal Complications in Diabetes. Deutsches Arzteblatt international. 2016;113(48):816-23.
  7. Goh JK, Cheung CY, Sim SS, Tan PC, Tan GS, Wong TY (2016) Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol 10(2):282–294.
  8. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410.
  9. Heydon P, Egan C, Bolter L, Chambers R, Anderson J, Aldington S, Stratton IM, Scanlon PH, Webster L, Mann S, du Chemin A, Owen CG, Tufail A, Rudnicka AR. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol.2020 Jun 30:bjophthalmol-2020-316594. doi: 10.1136/bjophthalmol-2020-316594.
  10. Baker C.W. et al, “Effect of Initial Management with Aflibercept vs Laser Photocoagulation vs Observation on Vision Loss Among Patients With Diabetic Macular Edema Involving the Center of the Macula and Good Visual Acuity. A Randomized Clinical Trial” JAMA (2019) 321(19): 1880-1894
  11. Deutsche Ophthalmologische Gesellschaft (DOG), Retinologische Gesellschaft e. V. (RG), Berufsverband der Augenärzte Deutschlands e. V. (BVA), „Stellungnahme der DOG, der RG und des BVA zur Therapie des diabetischen Makulaödems, Stand August 2019“ Klin Monatsbl Augenheilkd 2020; 237: 325–352
  12. Gross, J. G., et al“Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial.“ JAMA Ophthalmol . (2018) 136(10): 1138-1148.
  13. Lang GE et al, Efficiacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laserphotocoagulation alone in proliferative diabetic retinopathy – the PRIDE-study Acta Ophthalmol (2019) doi 10.1111/aos.14312
  14. Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft, Berufsverband der Augenärzte Deutschlands, Ergänzende Stellungnahme der DOG, der RG und des BVA zur Therapie der proliferativen diabetischen Retinopathie, Ophthalmologe (2020) 117, 755-759
  15. Lemmen K.D. et al Stadieneinteilung und Therapie der diabetischen Retinopathie und Makulopathie– eine Übersicht. Teil 1, Z. prakt. Augenheilkd. 42: 389 – 398 (2021)
  16. Lemmen K.D. et al Stadieneinteilung und Therapie der diabetischen Retinopathie und Makulopathie– eine Übersicht. Teil 2, Z. prakt. Augenheilkd. 42: im Druck (2021)


Diabetes und Fußprobleme in Deutschland 2021: ein Update (S. 122-132)
  1. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. N Engl J Med 2017;376:2367–75. https://doi. org/10.1056/NEJMra1615439.
  2. Nationale Diabetes-Surveillance, Robert-Koch-Institut, Faktenblatt „Diabetisches Fußsyndrom“ Seite 58-59, 2019
  3. Bohn B, Grunerbel A, Altmeier M et al. (2018) Diabetic foot syndrome in patients with diabetes. A multicenter German/Austrian DPV analysis on 33 870 patients. Diabetes Metab Res Rev 34(6):e3020
  4. Nationale Diabetes-Surveillance, Robert-Koch-Institut, Handlungsfeld 3 „Diabeteskomplikationen reduzieren“, Seite 46-61, 2019
  5. Faktenblatt diabetesbedingte Amputationen der Nationalen Diabetes-Surveillance, Robert-Koch-Institut, Seite 60-61, 2019
  6. IWGDF Guidelines on the prevention and management of diabetic foot disease, Seite 1-208, 2019
  7. Richtlinie über die Konkretisierung des Anspruchs auf eine unabhängige ärztliche Zweitmeinung gemäß § 27b Absatz 2 SGB V – Zm-RL, https://www.g-ba.de/downloads/62-492-2498/Zm-RL_2020-04-16_2021-03-18_iK-2021-05-27.pdf
  8. Eckhard, M Das diabetische Fußsyndrom – mehr als eine Wunde am Fuß, Info Diabetologie 13: 26-36, 2019
  9. Hochlenert D, Engels G, Morbach S in : Das diabetische Fußsyndrom – über die Entität zur Therapie, Springer 2014
  10. Entscheidungshilfe diabetisches Fußsyndrom: Lässt sich eine Amputation vermeiden?
  11. https://www.gesundheitsinformation.de/pdf/diabetes-typ-2/eh_behandlungen_diabetisches-fusssyndrom.pdf
  12. Kersken, J und Eckhard M Diabetisches Fußsyndrom Mindestanforderungen definieren Dt. Ärzteblatt 118(12): A-641, 2021
  13. Spoden M, Nimptsch U and Mansky T, Amputation rates of lower limb by amputation level – observational study using German national hospital discharge data from 2005 to 2015, BMC Health Serv Res, 19: 163, 2019
  14. Lawall H, Geisbüsch PH, Lobmann R. Makroangiopathie bei Diabetes mellitus. DMW 149: 1606-13, 2020
  15. Cosentino F et al. 2019 ESC Guidelines on diabetes, pre-diabetes, andcardiovascular diseases developed in Colloboration with EASD. Eur Heart J 41:255-323, 2020
  16. Balletshöfer B, Ito W, Lawall H et al. Positionspapier zur Diagnostik und Therapie der peripherin arteriellen verschlusskrankheit bei Menschen mit Diabetes mellitus. Diabetes und Stoffwechsel 14 (Suppl. 2):S258-266, 2019
  17. AWMF). S3-Leitlinie „Nierenerkrankungen bei Diabetes im Erwachsenenalter“. Nationale Versorgungsleitlinie. AWMF-Leitlinien-Register Nr. nvl/001d 2015
  18. Hicks C, Najafian A, Farber A. et al Diabetes does not worsen outcomes following infrageniculate bypass or endovascular intervention for patients with critical limb ischemia. J Vasc Surg 2016; 64: 1667-1674.e1 . doi: 10.1016/j.jvs.2016.07.107
  19. Stratmann B et al. JAMA Netw Open. 2020; doi: 10.1001/jamanetworkopen.2020.10411
  20. Mirpour S et al. Sci Rep. 2020; doi: 10.1038/s41598-020-67232-x
  21. Amini MR et al. J Diabetes Metab Disord. 2020; doi: 10.1007/s40200-020-00577-2
  22. OrganisationforEconomicCo¬operationandDevelop¬ ment (OECD) (2017) Health at a Glance 2017: OECD Indicators. OECD Publishing, Paris. www.oecd¬ilibrary. org/content/publication/health_glance¬2017¬en (Stand: 11.09.2019)
  23. Ogurtsova K, Morbach S, Haastert B, Dubsky M, Rümenpaf G, Zigler D, Jirkovska A und Ivks A: Long-term recurrence of diabetic foot ulcers in two cohorts from centres in Germany an Czech Republic. Diabetes Research and Clinical Practice 172: 1-10, 2021; doi.org/10.1016/j.diabres.2020.108621
  24. Fu-Hui Jiang, Xiao-Man Liu, Hai-Rong Yu, Yan Qian, Hong-Lin Chen, The Incidence of Depression in Patients With Diabetic Foot Ulcers: A Systematic Review and Meta-Analysis. The International Journal of Lower Extremity Wounds, 1-13, 2020
  25. Savaş Çamur, Sefa G Batıbay, Serkan Bayram, Effect of lower extremity amputation on caregiving burden in caregivers of patients with diabetic foot: Prospective cohort study Int Wound J 17(4): 890-896, 2020
  26. Vileikyte L, Pouwer F, Gonzalez JS. Psychosocial research in the diabetic foot: Are we making progress? Diabetes Metab Res Rev. 36(S1): e3257, 2020


Diabetes mellitus – Herzerkrankungen – Schlaganfall (S. 133-144)
  1. Jacobs E, Hoyer A, Brinks R., et al.: Burden of Mortality Attributable to Diagnosed Diabetes: A Nationwide Analysis Based on Claims Data From 65 Million People in Germany. Diabetes Care 2017;40:1703
  2. Rawshani A,Rawshani A, Franzén S, et al.: Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018 Aug11;392(10146):477-486
  3. Rawshani A, Rawshani A, Franzén S, et al.: Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes.N Engl J Med. 2018 Aug 16;379(7):633-644
  4. Tschoepe D, Towae F, Papp A, et al.: High 3-year-mortality rates in females with newly diagnosed diabetes after acute STEMI and NSTEMI: results of the SWEETHEART registry. Diabetologia 2012;55:30–31
  5. NeumannFJ, Sousa-Uva M, Ahlsson A et al.; ESC Scientific Document Group: 2018 ESC/EACTS Guidelines on myocardial revascularization European Heart Journal, ehy394, online published: 25 August 2018
  6. Kristensen SL, Preiss D, Jhund PS, et al.; PARADIGM-HF Investigators and Committees: Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail 2016;9 (1)
  7. Halle M, Gitt AK, Hanefeld M, et al.: Diabetes und Herzinsuffizienz: eine praxisorientierte, kritische Bestandsaufnahme. Dtsch Med Wochenschr 2012; 137:437–441
  8. McMurray JJV, Solomon SD, Inzucci SE, et al. for the DAPA-HF Trial Committees and Investigators: Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019; 381:1995-2008. doiI: 10.1056/NEJMoa1911303
  9. Packer M, Anker SD, Butler I, et al. for the EMPEROR-Reduced Trial Invertigators: Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020; 383:1413-1424.doi: 10.1056/NEJMoa2022190
  10. Zannad F, Ferreira JP, Pocock SJ et al.: SGLT2 Inhibitors in patients with heart failure with reduced ejection fraction: a metaanalysis of the EMPEROR-Reduced and DAPA-HF trials. The Lancet 2020; 396: 819-829.doi: 10.1016/S0140-6736(20)31824-9
  11. Junttila MJ, Barthel P, Myerburg RJ, et al.: Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm 2010;7:1396–1403
  12. Lynge TH, Svane J, Pedersen-Bjergaard U, et al.: Sudden cardiac death among persons with diabetes aged 1-49 years: a 10-year nationwide study of 14 294 deaths in Denmark. Eur Heart J. 2020 Jul 21;41(28):2699-2706. doi: 10.1093/eurheartj/ehz891
  13. Cubbon RM, Wheatcroft SB, Grant PJ, et al.: Evaluation of Methods and Management of Acute Coronary Events Investigators: Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J 2007; 28: 540–550
  14. Zinman B, Wanner C, Lachin JM, et al.; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373 (22): 2117–2128
  15. Marso SP, Daniels GH, Brown-Frandsen K, et al. for LEADER Steering Comittee on behalf of the LEADER Trial Investigators: Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375:311-322
  16. Kosiborod M, Cavender M, Norhammar A: Lower rates of hospitalization for heart failure and all-cause death in new users of SGLT2 inhibitors: the CVD-REAL study. 66th Scientific Session of the American College of Cardiology, Washington, DC. März 17–19, 2017. Abstract 415-1
  17. Kirchhof P, Benussi S, Kotecha D, et al.: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016; 18 (11): 1609–78
  18. Doherty JU, Gluckman TJ, Hucker WJ, et al.: 2017 ACC Expert Consensus Decision Pathway for periprocedural management of anticoagulatoon in patients with nonvalvular atrila Fibrillation: a report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol 2017; 69 (7): 871-98
  19. Steffel H, Heidbuchel H: ‘Ten Commandments’ of the EHRA Guide for the Use of NOACs in AF. European Heart Journal 2018; 39 (16): 1322
  20. Peters SA, Huxley RR, Woodward M.: Diabetes as a risk factor for stroke in women compares with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014; 383: 1973-80
  21. O‘Donnell MJ, Chin SL, Rangarajan S, et al.; INTERSTROKE investigators: Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016 Aug 20;388(10046):761-775
  22. Jeerakathil T, Johnson JA, Simpson SH, et al.; Short-term risk for stroke in doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: a population-based cohort study. Stroke 2007; 38: 1739-43
  23. Bushnell CD, Olson DM, Zhao X, et al.; AVAIL Investigators: Secondary preventive medication persistence and adherence 1 year after stroke. Neurology 2011; 77: 1182-90
  24. Selvin E, Wattanakit K, Steffes MW et al. HbA1c and Peripheral Arterial Disease in Diabetes.The Atherosclerosis Risk in Communities study. Diabetes Care 2006 Apr; 29(4): 877-882
  25. Low Wang CC, Blomster JI, Heizer G et al. Cardiovascular and Limb Outcomes in Patients With Diabetes and Peripheras Artery Disease. The EUCLID Trial. J Am Coll Cardiol. 2018 Dec 25;72(25):3274-3284
  26. Cosentino F, Grant PJ, Aboyans V, et al. 2019; ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323
  27. Forst T, Jacob S. ESC/ EASD-Guidelines 2019 – Was muss man wissen?. Kompendium Diabetes 2020:14-18
  28. Arnott C, Li Q, Kang A et al., Sodium-Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Am Heart Assoc.2020 Feb 4;9(3):e014908
  29. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295-2306
  30. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in Patients With Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov 21;381(21):1995-2008.
  31. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017 Aug 17;377(7):644-657
  32. Verma S, Mazer DC, Al-Omran M et al. Cardiovascular Outcomes and Safety of Empagliflozin in Patients With Type 2 Diabetes Mellitus and Peripheral Artery Disease: A Subanalysis of EMPA-REG OUTCOME. Circulation. 2018 Jan 23;137(4):405-407
  33. Dhatariya K, Bain SC, Buse JB et al. The Impact of Liraglutide on Diabetes-Related Foot Ulceration and Associated Complications in Patients With Type 2 Diabetes at High Risk for Cardiovascular Events: Results From the LEADER Trial. Diabetes Care. 2018 Oct;41(10):2229-2235


Diabetes bei Kindern und Jugendlichen (S. 145-157)
  1. Schienkiewitz A, Brettschneider AK, Damerow S, Schaffrath Rosario A (2018). Übergewicht und Adipositas im Kindes und Jugendalter in Deutschland – Querschnittsergebnisse aus KiGGS Welle 2 und trends. J HealthMonit 3; DOI 10.17886/RKI-GBE-2018-005 Robert Koch-Institut, Berlin
  2. Rosenbauer J, Neu A, Rothe U, Seufert J, Holl RW. Diabetestypen sind nicht auf Altersgruppen beschränkt: Typ 1 Diabetes bei Erwachsenen und Typ 2 Diabetes bei Kindern und Jugendlichen. J Health Monitor 2019; 4 DOI 10.25646/5981
  3. Bendas A, Rothe U, Kiess W, Kapellen TM, Stange T, Manuwald U, Sazsieder E, Holl RW, Schoffer O, Stahl-Pehe A, Giani G, Ehehalt S, Neu A, Rosenbauer J. Trends in incidenceratesduring 1999-2008 andprevalence in 2008 of childhood type 1 diabetes in Germany – Model-based National estimates. PLoSOne 2015 Jul 16;10(7):e0132716. doi: 10.1371/
  4. Patterson CC, Valma H, Rosenbauer J et al. Trends in cyclical variation in theincidenceofchildhood type 1 diabetes in 26 European centres in the 25 yearperiod 1989-2013: a multicentreprospectiveregistrationstudy. Diabetologia, 62(3):408-417. DOI: https://doi.org/10.1007/s00125-018-4763-3
  5. Ziegler AG, Kick, K, Bonifacio E et al. Yield of a Public Health Screening of children for islet cellantibodies in Bavaria, Germany. JAMA 2020; 323:339-351
  6. Datz N, Kordonouri O, Danne T. Wenn Menschen mit Typ 1 Diabetes erwachsen werden: Diabetestechnologie und Transition – brauchen wir neue Modelle? Dtsch Med Wochenschr 2021; 146: 1-6
  7. Von Sengbusch S, Dördelmann J, Lemke S, Lange K, Hiort O, Katalinic A, Frielitz F: Parental expectations before and after 12-month experience with video consultations combined with regular outpatient care for children with type 1 diabetes: A qualitative study. Diabetic Medicine. 2020 May 7. doi: 10.1055/a-1149-8814.
  8. Dehn-Hindenberg A, Lange K. Eltern von Kindern mit Typ-1-Diabetes: Folgen für Berufstätigkeit, psycho-soziale Belastungen und Bedarf an Unterstützungsleistungen – Ergebnisse der AMBA-Studie. Diabetologie und Stoffwechsel 2019; 14(S 01): S69 DOI: 10.1055/s-0039-1688306
  9. Danne T, Kordonouri O. COVID-19 und Typ-1-Diabetes: Wer ist besonders gefährdet? Kinder: Risiko Ketoazidose. Diabetologe 2021: doi.org/10.1007/s11428-021-00776-2
  10. Danne T, Kordonouri O. COVID-19 und Typ-1-Diabetes: Wer ist besonders gefährdet? Kinder: Risiko Ketoazidose. Diabetologe 2021: doi.org/10.1007/s11428-021-00776-2
  11. Holder M, Ehehalt S. Significant reduction of ketoacidosis at diabetes onset in children and adolescents with type 1 diabetes—The Stuttgart Diabetes Awareness Campaign, Germany. Ped Diabetes 2020;21: 1227-1231


Diabetestechnologie: ein Update (S. 171-176)
  1. Frielitz FS, Schlüter S, Heinemann L et al. Der Auftragsverarbeitungsvertrag (AV-Vertrag): Relevanz und praktische Bedeutung für die Diabetologie. Diabetologie und Stoffwechsel 2020. doi:10.1055/a-1185-8945. doi:10.1055/a-1185-8945
  2. Pleus S, Baumstark A, Jendrike N et al. System accuracy evaluation of 18 CE-marked current-generation blood glucose monitoring systems based on EN ISO 15197:2015. BMJ open diabetes research & care 2020; 8. doi:10.1136/bmjdrc-2019-001067
  3. Pleus S, Baumstark A, Jendrike N et al. Bewertung der Genauigkeit von Blutzuckermesssystemen, die von Krankenkassen zur Verordnung empfohlen werden, in Anlehnung an DIN EN ISO 15197: 2015. Diabetologie und Stoffwechsel 2021; 16; Vortrag, Diabetes Kongress 2021 - 55. Jahrestagung der DDG
  4. Heinemann L, Drossel D, Kaltheuner M. DiaDigital, Apps und digitale Gesundheitsanwendungen. Der Diabetologe 2020; 17: 275-282. doi:10.1007/s11428-020-00700-0
  5. Heinemann L, Deiss D, Siegmund T et al. Glukosemessung und -kontrolle bei Patienten mit Typ-1- oder Typ-2-Diabetes. Diabetologie und Stoffwechsel 2020; 15: S18-S39. doi:10.1055/a-1179-2865
  6. Freckmann G, Nichols JH, Hinzmann R et al. Standardization process of continuous glucose monitoring: Traceability and performance. Clinica chimica acta; international journal of clinical chemistry 2021; 515: 5-12. doi:10.1016/j.cca.2020.12.025
  7. Heinemann L, Waldenmaier D, Kulzer B et al. Patch-Pumpen: Sind die alle gleich? Diabetes Stoffwechsel und Herz 2019; 28: 131 - 137
  8. Thomas A. Algorithmen für die automatisierte Regulierung der Insulinabgabe.
  9. Biester T, Bratina N, Lange K et al. Diabetesberatung zum Hybrid-AID-System bei Typ-1-Diabetes: neue Perspektiven und Therapieempfehlungen. Diabetologie und Stoffwechsel 2020; 15: 147-156. doi:10.1055/a-1079-4577
  10. Ng SM. User‐driven, Open Source Diabetes Technology (special issue) Paediatric DIY APS. Diabetic Medicine 2021. e14630
  11. https://esysta-diabetes.com/. ESYSTA App & Portal – Digitales Diabetesmanagement.
  12. Maahs D. Overview of Continuous Glucose Monitoring Technology and Options—How Far Have We Come? In, ADA Scientific Sessions 2019. San Francisco; 2019
  13. Schlueter S, Freckmann G, Wernsing M et al. Entwicklung und psychometrische Evaluation eines herstellerunabhängigen Wissenstests zum kontinuierlichen Glukosemonitoring in Echtzeit für insulinbehandelte Menschen mit Diabetes. Diabetologie und Stoffwechsel 2021. doi:10.1055/a-1492-5294. doi:10.1055/a-1492-5294
  14. Schluter S, Freckmann G, Heinemann L et al. Evaluation of the SPECTRUM training programme for real-time continuous glucose monitoring: A real-world multicentre prospective study in 120 adults with type 1 diabetes. Diabet Med 2021; 38: e14467. doi:10.1111/dme.14467


Disease-Management-Programm Adipositas: der Auftrag an den G-BA (S. 184-189)
  1. Deutsche Adipositas-Gesellschaft (DAG). Prävention und Therapie der Adipositas; S3-Leitlinie, Langversion; Version 2.0 [online]. AWMF-Registernummer 050/001 Berlin (GER): Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF); 2014. [Zugriff: 12.07.2021]. URL: https://www.awmf.org/uploads/tx_szleitlinien/050-001l_S3_Adipositas_Pr%C3%A4vention_Therapie_2014-11-abgelaufen.pdf
  2. Bobbert T, Wernicke C. 396 Diabetes mellitus: Diagnostik, Klassifikation und Pathophysiologie. In: Suttorp N, Möckel M, Siegmund B, Dietel M (Eds). Harrisons Innere Medizin online; 20. Auflage. Berlin: ABW Wissenschaftsverlag; 2020. URL: https://eref.thieme.de/8IR4H.
  3. Von Schwartzenberg R, Spranger J. Insulinresistenz und Diabetes mellitus Typ 2. In: Suttorp N, Möckel M, Siegmund B, Dietel M (Eds). Harrisons Innere Medizin online; 20. Auflage. Berlin: ABW Wissenschaftsverlag; 2020. URL: https://eref.thieme.de/8CMZZ.
  4. Gemeinsamer Bundesausschuss. Beschluss „DMP-Anforderungen-Richtlinie: Nichtaufnahme eines Moduls Adipositas“ vom 22.05.2014. URL: https://www.g-ba.de/beschluesse/1999/


Betreuung von Menschen mit Diabetes in Apotheken (S. 190-195)
  1. https://www.leitlinien.de/themen/diabetes/2-auflage (letzter Zugriff am 23.06.2021)
  2. www.abda.de/kommission-bak-ddg (letzter Zugriff am 23.06.2021)
  3. https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/200430_DDG-GB2019_online_DS.pdf (letzter Zugriff am 23.06.2021)
  4. Petersmann, Astrid; Müller-Wieland, Dirk; Müller, Ulrich A.; Landgraf, Rüdiger; Nauck, Matthias; Freckmann, Guido et al. (2020): Definition, Klassifikation und Diagnostik des Diabetes mellitus. In: Diabetologe 16 (3), S. 247–253. DOI: 10.1007/s11428-020-00606-x.
  5. Kleinwechter, Helmut; Demandt, Norbert; Nolte, Andreas (2021): Prädisposition/Phänotypen des Gestationsdiabetes mellitus. In: Diabetologie und Stoffwechsel 16 (02), S. 109–123. DOI: 10.1055/a-1217-2233.
  6. https://www.deutsche-diabetes-gesellschaft.de/politik/stellungnahmen/addendum-zum-gemeinsamen-positionspapier-zur-herstellung-einer-ogtt-loesung-fuer-die-diagnose-eines-diabetes-einschliesslich-eines-gestationsdiabetes-analyse-und-vorschlaege-zur-herstellung (letzter Zugriff am 23.06.2021)


Psychosoziale Versorgung von Menschen mit Diabetes – aktuelle Aspekte (S. 211-218)
  1. Davies MJ, D'Alessio DA, Fradkin J, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-2701.
  2. Delamater AM, de Wit M, McDarby V, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Psychological care of children and adolescents with type 1 diabetes. Pediatr Diabetes. 2018;19 (Suppl 27):237-249.
  3. American Diabetes Association. 13. Children and Adolescents: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S180-S199.
  4. American Diabetes Association. 12. Older Adults: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S168-S179.
  5. Deutsche Diabetes Gesellschaft (DDG) S3-Leitlinie Therapie des Typ-1-Diabetes, 2. Auflage AWMF-Registernummer: 057-013 www.awmf.org/leitlinien/detail/ll/057-013.html
  6. Zeyfang A, Wernecke J, Bahrmann A. Diabetes Mellitus at an Elderly Age. German Diabetes Association: Clinical Practice Guidelines Diabetologie 2020;15(Suppl 1):S112–S119.
  7. Landgraf R, Aberle J, Birkenfeld AL, et al. Therapie des Typ-2-Diabetes. DDG-Praxisempfehlung. Diabetologie 2020;15(Suppl 1):S65–S92.
  8. Neu A, Bürger-Büsing J, Danne T, et al. Diagnosis, Therapy and Follow-Up of Diabetes Mellitus in Children and Adolescents. Exp Clin Endocrinol Diabetes. 2019;127(S 01):S39-S72.
  9. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27:813-823.
  10. Moulton CD, Pickup JC, Ismail K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol. 2015;3:461-471.
  11. Biester T, Bratina N, Lange K, Biester S, Remus K, Thomas A, Danne T, Kordonouri O. Diabetesberatung zum Hybrid-AID-System bei Typ-1-Diabetes: neue Perspektiven und Therapieempfehlungen. Diabetologie und Stoffwechsel 2020;15:147-156.
  12. Dehn-Hindenberg A, Lange K: Eltern von Kindern mit Typ-1-Diabetes: Folgen für Berufstätigkeit, psycho-soziale Belastungen und Bedarf an Unterstützungsleistungen – Ergebnisse der AMBA-Studie. Diabetologie und Stoffwechsel 2019;14(S 01):S69.
  13. Kovacs Burns K, Nicolucci A, Holt RI, et al. Diabetes Attitudes, Wishes and Needs second study (DAWN2™): cross-national benchmarking indicators for family members living with people with diabetes. Diabet Med. 2013;30:778-788.
  14. Lange K, Kordonouri O. Kinder mit Diabetes in der Schule. Diabetologe 2021;17:463–474.
  15. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019;42:1593-1603.
  16. Pouwer F, Schram MT, Iversen MM, Nouwen A, Holt RIG. How 25 years of psychosocial research has contributed to a better understanding of the links between depression and diabetes. Diabet Med. 2020;37:383-392.
  17. Kulzer B, Albus C, Herpertz S et al. Psychosoziales und Diabetes (Teil 1). Diabetologie und Stoffwechsel 2013; a 8 (3): 198–242.
  18. Kordonouri O, Lange K, Biester T, et al. Determinants of glycaemic outcome in the current practice of care for young people up to 21 years old with type 1 diabetes under real-life conditions. Diabet Med. 2020;37:797-804.
  19. Nordentoft M, Rod NH, Bonde JP, et al. Effort-reward imbalance at work and risk of type 2 diabetes in a national sample of 50,552 workers in Denmark: A prospective study linking survey and register data. J Psychosom Res. 2020;128:109867.
  20. Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev. 2021;37:e3377.
  21. Mansfield KE, Mathur R, Tazare J, et al. Indirect acute effects of the COVID-19 pandemic on physical and mental health in the UK: a population-based study. Lancet Digit Health. 2021;3:e217-e230.
  22. Gregg EW, Sophiea MK, Weldegiorgis M. Diabetes and COVID-19: Population Impact 18 Months Into the Pandemic [published online ahead of print, 2021 Jul 9]. Diabetes Care. 2021;dci210001. doi:10.2337/dci21-0001
  23. Dubey S, Biswas P, Ghosh R, et al. Psychosocial impact of COVID-19. Diabetes Metab Syndr. 2020;14:779-788.
  24. Gemeinsamer Bundesausschuss. Richtlinie des Gemeinsamen Bundesausschusses über die 21. Änderung der DMP-Anforderungen-Richtlinie(DMP-A-RL): Änderung der Anlage 7 (DMP Diabetes mellitus Typ 1) und der Anlage 8 (DMP Diabetes mellitusTyp 1 und Typ 2 – Dokumentation). https://www.g-ba.de/downloads/40-268-6304/2020-01-16_DMP-A-RL_Aenderung-Anlage-7-8-DMP-Diabetes-mellitus_Servicedokument.pdf access: 28.7.2021
  25. Kempf K, Altpeter B, Berger J, et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care. 2017;40(7):863-871. doi:10.2337/dc17-0303


Kinder und Jugendliche mit Diabetes – aktuelle Versorgungssituation und Veränderungen der letzten 26 Jahre (S. 219-231)
  1. Hofer SE, Schwandt A, Holl RW. Standardized documentation in pediatric diabetology: experience from Austria and Germany. J Diabetes Sci Technol 2016;10:1042-1049.
  2. Larsson HE, Vehik K, Bell R, et al. Reduced Prevalence of Diabetes Ketoacidosis at Diagnosis of Type 1 Diabetes in Young Children Participating in Longitudinal Follow-Up. Diabetes Care 2011;34:2347–2352
  3. Schöttler H, Auzanneau M, Best F, et al. Insulinpumpe, kontinuierliche und kapilläre Glukosemessung bei Kindern, Jugendlichen und Erwachsenen mit Diabetesmellitus: Daten des DPV-Registers zwischen 1995 und 2019. Diabetologie und Stoffwechsel 2020; 15:477-486.
  4. Karges B, Schwandt A, Heidtmann B, et al. Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 2017; 318:1358-1366.
  5. Auzanneau M, Karges B, Neu A, et al. Use of insulin pump therapy is associated with reduced hospital-daysin the long-term: a real-world study of 48,756 pediatric patients with type 1 diabetes. Eur J Pediatr 2021; 180:597-606.
  6. Kamrath C, Tittel SR, Kapellen TM, et al. Early versus delayed insulin pump therapy in children with newly diagnosed type 1 diabetes: results from the multicentre, prospective diabetes follow-up DPV registry. Lancet Child Adolesc Health 2021;5:17-25.
  7. Auzanneau M, Rosenbauer J, Maier W, et al. Heterogeneity of Access to Diabetes Technology Depending on Area Deprivation and Demographics Between 2016 and 2019 in Germany. J Diabetes Sci Technol 2021; doi: 10.1177/19322968211028608 [im Druck].
  8. Grimsmann JM, von Sengbusch S, Freff M, et al. Glucose management indicator based on sensor data and laboratory HbA1c in people with type 1 diabetes from the DPV database: differences by sensor type. Diabetes Care 2020; doi: 10.2337/dc20-0259.
  9. Karges B, Kapellen T, Wagner VM, et al. Glycated hemoglobin A1c as a risk factor for severe hypoglycemia in pediatric type 1 diabetes. Pediatr Diabetes 2017;18(1):51-58.
  10. Haynes A, Hermann JM, Miller KM, et al. Severe hypoglycemia rates are not associated with HbA1c: a cross-sectional analysis of 3 contemporary pediatric diabetes registry databases. Pediatr Diabetes 2016;18(7):643-650.
  11. Clements MA, Schwandt A, Donaghue KC, et al. Five heterogeneous HbA1c trajectories from childhood to adulthood in youth with type 1 diabetes from three different continents: A group-based modeling approach. Pediatr Diabetes 2019;20:920-931.
  12. Sherr JL, Hermann JM, Campbell F, et al. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia 2016;59:87-91.
  13. Cherubini V, Grimsmann JM, Åkesson K, et al. Temporal trends in diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes between 2006 and 2016: results from 13 countries in three continents. Diabetologia 2020;63:1530-1541.
  14. Lange K, Hildebrandt S, Danne T. Diabetesversorgung in der Pädiatrie – Leitlinien und Realität. Deutsches Ärzteblatt 2007;104:2121-2126.
  15. Lange K, Gocz A, Neu A on behalf of the German working group for paediatric diabetes (AGPD). Structure of paediatric diabetes care in Germany 1998-2008: increased centralization and qualification of multidisciplinary teams. Pediatric Diabetes 2010;11:47.
  16. Cameron FJ, Wherrett DK. Care of diabetes in children and adolescents: controversies, changes, and consensus. Lancet 2015;385:2096-2106.
  17. Karges B, Prinz N, Placzek K, et al. A comparison of familial and sporadic type 1 diabetes among young patients. Diabetes Care 2021;44:1116-1124.
  18. Prinz N, Tittel SR, Bachran R, et al. Characteristics of patients with type 1 diabetes and additional autoimmune disease in the DPV registry. J Clin Endocrinol Metab 2021; doi: 10.1210/clinem/dgab376 [im Druck].
  19. Rosenbauer J, Neu A, Rothe U, et al. Types of diabetes are not limited to age groups: type 1 diabetes in adults and type 2 diabetes in children and adolescents. Journal of Health Monitoring 2019;4(2): doi: 10.25646/5987
  20. Warncke K, Kummer S, Raile K, et al. Frequency and characteristics of MODY 1 (HNF4AMutation) and MODY 5 (HNF1BMutation): analysis from the DPV database. J Clin Endocrinol Metab 2019;104(3):845–855.
  21. Kapellen T, Müther S, Schwandt A, et al. Transition to adult diabetes care in Germany-High risk for acute complications and declining metabolic control during the transition phase. Pediatr Diabetes 2018; [im Druck].
  22. Bächle C, Scheuing N, Kruse J, et al. Gestörtes Essverhalten und Essstörungen bei Typ-1-Diabetes: Ein Zusammenspiel mit Relevanz für die Diabetestherapie? Diabetes, Stoffwechsel und Herz 2014;23(3):156-160.
  23. Hilgard D, Konrad K, Meusers M, et al. Comorbidity of attention deficit hyperactivity disorder and type 1 diabetes in children and adolescents: Analysis based on the multicentre DPV registry. Pediatr Diabetes 2016;18(8):706-713.
  24. Plener PL, Molz E, Berger G, et al. Depression, metabolic control, and antidepressant medication in young patients with type 1 diabetes. Pediatr Diabetes 2015;16(1):58-66.
  25. Galler A, Hilgard D, Bollow E, et al. Psychological care in children and adolescents with type 1 diabetes in a real-world setting and associations with metabolic control. Pediatr Diabetes 2020; doi: 10.1111/pedi.13065.


Gesundheitsökonomische Aspekte des Diabetes mellitus (S. 232-240)
  1. Bächle CC, Holl RW, Straßburger K, Molz E, Chernyak N, Beyer P, Schimmel U, Rütschle H, Seidel J, Lepler R, Holder M, Rosenbauer J, Icks A. Costs of paediatric diabetes care in Germany: current situation and comparison with the year 2000. Diabet Med. 2012; 29:1327-1334.
  2. Brüne M, Linnenkamp U, Andrich S, Jaffan-Kolb L, Claessen H, Dintsios CM, Schmitz-Losem I, Kruse J, Chernyak N, Hiligsmann M, Hermanns N, Icks A. Health Care Use and Costs in Individuals With Diabetes With and Without Comorbid Depression in Germany: Results of the Cross-sectional DiaDec Study. Diabetes Care. 2021; 44(2): 407-415.
  3. Chernyak N, Jülich F, Kasperidus J, Stephan A, Begun A., Kaltheuner M, Icks A. Time cost of diabetes: Development of a questionnaire to assess time spent on diabetes self-care. J Diab Comp. 2017; 31(1): 260–266.
  4. Egede LE, Bishu KG, Walker RJ, Dismuke CE. Impact of diagnosed depression on healthcare costs in adults with and without diabetes: United States, 2004-2011. J Affect Disord. 2016; 195: 119-126.
  5. Egede LE, Walker RJ, Bishu K, Dismuke CE. Trends in costs of depression in adults with diabetes in the United States: Medical Expenditure Panel Survey, 2004-2011. J Gen Intern Med. 2016; 31: 615-622.
  6. Hoffmann F, Claessen H, Morbach S, Waldeyer R, Glaeske G, Icks A. Impact of diabetes on costs before and after major lower extremity amputations in Germany. J Diab Comp. 2013; 27: 467-472.
  7. Huang CJ, Hsieh HM, Chiu HC, Wang PW, Lee MH, Li CY, Lin CH. Health care utilization and expenditures of patients with diabetes comorbid with depression disorder: a national population-based cohort study. Psychiatry Investig. 2017; 14: 770-778.
  8. Icks A, Claessen H, Strassburger K, Waldeyer R, Chernyak N, Jülich F, Rathmann W, Thorand B, Meisinger C, Huth C, Rückert I-M, Schunk M, Giani G, Holle R. Patient time costs attributable to healthcare use in diabetes: results from the population-based KORA survey in Germany. Diabet Med. 2013; 30: 1245-1249.
  9. Icks A, Haastert B, Arend W, Konein J, Thorand B, Holle R et al. Time spent on self management by people with diabetes: results from the population based KORA survey in Germany. Diabet Med. 2019; 36: 970-981.
  10. Icks A, Haastert B, Arend W, Konein J, Thorand B, Holle R, Laxy M, Schunk M, Neumann A, Wasem J, Chernyak N, Dintsios Ch--M. Patient time costs due to self-management in diabetes may be as high as direct medical costs: results from the population-based KORA survey FF4 in Germany. Diabet Med. 2020; 37(5): 895-897.
  11. International Diabetes Federation: Diabetes Atlas. 9th Edition. Brussels: International Diabetes Federation 2019.
  12. Jacobs E., Hoyer A., Brinks R, Icks A., Kuß O, Rathmann W. Healthcare costs of Type 2 diabetes in Germany. Diabet Med. 2017; 34(6): 855-861.
  13. Kähm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK, Holle R. Health Care Costs Associated With Incident Complications in Patients With Type 2 Diabetes in Germany. Diabetes Care. 2018;41: 971-978.
  14. Kähm K., Stark R, Laxy M, Schneider U, Leidl R. Assessment of excess medical costs for persons with type 2 diabetes according to age groups: an analysis of German health insurance claims data. Diabet Med. 2020; 37(10): 1752-1758.
  15. Kitzmann F., Tidelski O, Bestehorn K. The development of costs for antidiabetics in statutory and private health insurance in Germany - an analysis of selected influencing factors. J Public Health. 2020; 28: 305-311.
  16. Kuhlmann A, Krüger H, Seidinger S, Hahn A. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus. Eur J Health Econ. 2020; 21: 437-449.
  17. König H, Rommel A, Baumert J, Schmitd C, König HH, Brettschneider C, Konnopka A. Excess costs of type 2 diabetes and their sociodemographic and clinical determinants: a cross-sectional study using data from the German Health Interview and Examination Survey for Adults (DEGS1). BMJ Open. 2021; 11: e043944.
  18. Köster I, Schubert I, Huppertz E. Fortschreibung der KoDiM-Studie: Kosten des Diabetes mellitus 2000–2009. Dtsch Med Wochenschr. 2012; 137: 1013-1016.
  19. Köster I, von Ferber L, Ihle P, Schubert I, Hauner H. The cost burden of diabetes mellitus: the evidence from Germany – the CoDiM Study. Diabetologia. 2006; 49: 1498-1504.
  20. Lehnert T, Konnopka A, Riedel-Heller S, König HH. Diabetes mellitus and comorbid depression: economic findings from a systematic literature review. Psychiatr Prax. 2011; 38: 369-375.
  21. Montalbo J, Ogurtsova K, Vomhof M, Icks A. Modellbasierte gesundheitsökonomische Evaluation der Diabetesprävention- Typ-2-Diabetes. Der Diabetologe. 2020; 16(3): 220-225.
  22. Radermacher L, Ponto K, Merkesdal S, Pomart V, Frommer L, Pfeiffer N, König J, Kahaly GJ. Type I Diabetes is the Main Cost Driver in Autoimmune Polyendocrinopathy. J Clin Endocrinol Metabol. 2020; 105(4): e1307-e1315.
  23. da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, Cavan D, Makaroff LE. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract. 2016; 117: 48-54.
  24. Schöffski O, Graf von der Schulenburg JM (Hg.) (2012): Gesundheitsökonomische Evaluationen. Heidelberg, Dordrecht, London, New York: Springer.
  25. Ulrich S, Holle R, Wacker M, Stark R, Icks A, Thorand B, Peters A, Laxy M. Cost burden of type 2 diabetes in Germany: results from the population-based KORA studies. BMJ Open. 2016; 6(11): e012527.


Das Deutsche Zentrum für Diabetesforschung – Aktuelles aus der Wissenschaft (S. 241-247)
  1. Robert Wagner et al: Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nature Medicine. DOI: https://doi.org/10.1101/2020.10.12.20210062
  2. Zaharia, O. P. et al.: Risk of diabetes-associated di¬sea¬ses in sub¬groups of pa¬ti¬ents with recent-onset dia¬be¬tes: a 5-year follow-up study. In: Lancet Diabetes Endocrinol, 2019, 7: 684-694 DOI: 10.1016/S2213-8587(19)30187-1.
  3. Herder C. et al.: Differences in Biomarkers of Inflammation Between Novel Subgroups of Recent-Onset Diabetes Diabetes. 2021 Feb 19;db201054. PMID: 33608423 DOI: 10.2337/db20-1054
  4. Original-Publikation:Wigger, L. et al.: Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories toward type 2 diabetes. Nature Metabolism. DOI:10.1038/s42255-021-00420-9
  5. Ouni, M. et al.: Epigenetic Changes in Islets of Langerhans Preceding the Onset of Diabetes. Diabetes 2020;69:1–15 | doi.org/10.2337/db20-0204
  6. Scholz, O. et al.: Peripherally active dextromethorphan derivatives lower blood glucose levels by targeting pancreatic islets. Cell Chemical Biology. 2021, 11 June, DOI: https://doi.org/10.1016/j.chembiol.2021.05.011
  7. Ansarullah et al.: Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature, DOI: 10.1038/s41586-021-03225-8
  8. Ziegler, A. et al.: Yield of a public health screening of children for islet autoantibodies in Bavaria, Germany. JAMA, DOI:10.1001/jama.2019.21565


Warum ein Werbeverbot für süße und fettige Snacks längst überfällig ist (S. 255-260)
  1. Robert Koch-Institut: KiGGS Welle 2 (2014 – 2017) – Die zweite Folgeerhebung der „Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland“, 2018, https://edoc.rki.de/handle/176904/3050
  2. Global-Burdon-of-Disease (GBD-Studie): Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study, 2017, https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)30041-8/fulltext
  3. Deutsche Gesellschaft für Kinder- und Jugendmedizin: Adipositas bei Kindern: eine „stille“ Pandemie, 21.06.2021, https://www.dgkj.de/pi-adipositas
  4. PD Dr. Tobias Effertz: Kindermarketing für ungesunde Lebensmittel in Internet und TV, Universität Hamburg, 2021, https://www.dankallianz.de/pressemeldung/studie-kinder-sehen-pro-tag-15-werbungen-fuer-ungesundesessen.html
  5. Foodwatch e. V.: Report 2021. Junk-Fluencer. Wie McDonald’s, Coca-Cola & Co. in sozialen Medien Kinder mit Junkfood ködern, 2021, https://www.foodwatch.org/de/aktuelle-nachrichten/2021/junkfluencer-so-koedern-mcdonalds-coca-cola-co-kinder-in-sozialen-medien/
  6. Robert Koch-Institut: „Fast Food-Konsum der Jugendlichen in Deutschland – Ergebnisse aus EsKiMo II“, 2020, https://edoc.rki.de/handle/176904/6408
  7. Emond JA et al.: „Influence of child-targeted fast food TV advertising exposure on fast food intake: A longitudinal study of preschool-age children“, 2019, https://www.sciencedirect.com/science/article/abs/pii/S0195666318318671?via%3Dihub
  8. RA Prof. Dr. Remo Klinger: Rechtliche Stellungnahme zu Fragen der Regulierung des Kindermarketings beim Vertrieb von Lebensmitteln, 2020 im Auftrag von foodwatch e. V., https://www.foodwatch.org/de/pressemitteilungen/2021/foodwatch-bundesernaehrungsministerin-kloeckner-muss-junkfood-werbung-an-kinder-verbieten/
  9. Zentralrat der Deutschen Werbewirtschaft (ZAW): Erweiterung der Selbstverpflichtung für Lebensmittelwerbung, 12.04.2021, https://zaw.de/erweiterung-der-selbstverpflichtung-fuer-lebensmittelwerbung/
  10. Bundesministerium für Ernährung und Landwirtschaft: Schärfere Regulierung für an Kinder gerichtete Lebensmittelwerbung, 12.04.2021, https://www.bmel.de/SharedDocs/Pressemitteilungen/DE/2021/056-werbung-lebensmittel-kinder.html
  11. Dr. med. Peter von Philipsborn: Lebensmittelmarketing mit Kinderoptik und deren Bewerbung. Problemlage und Möglichkeiten der politischen Regulierung, 2021, https://www.vzbv.de/pressemitteilungen/strenge-regeln-fuer-kinderlebensmittel-ueberfaellig
  12. Lindsey Smith Taillie, Marcela Reyes, M. Arantxa Colchero, Barry Popkin, Camila Corvalán: An evaluation of Chile’s Law of Food Labeling and Advertising on sugar-sweetened beverage purchases from 2015 to 2017: A before-and-after study, 2020, https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003015
  13. Heart and Stroke Foundation of Canada: What Are Other Countries Doing?, 2020, https://stopmarketingtokids.ca/what-are-other-countries-doing/
  14. Der Spiegel: Großbritannien will Junkfood-Werbung im TV vor 21 Uhr verbieten, 24.06.2021, https://www.spiegel.de/wirtschaft/unternehmen/fettleibigkeit-bei-kindern-grossbritannien-will-junkfood-werbung-im-tv-vor-21-uhr-verbieten-a-bc9bb029-c503-48ab-a2c6-6c183c847073
  15. New advertising rules to help tackle childhood obesity (Pressemitteilung des britischen Gesundheitsministeriums), 24.06.2021, https://www.gov.uk/government/news/new-advertising-rules-to-help-tackle-childhood-obesity
  16. Bandy KL et a: Reductions in sugar sales from soft drinks in the UK from 2015 to 2018, 2020, BMC Medicine 18:20
  17. Forsa-Studie des Else Kröner-Fresenius-Zentrums für Ernährungsmedizin: Veränderung von Lebensstil und Ernährung vor dem Hintergrund der Corona-Pandemie, 2020, https://www.ekfz.tum.de/fileadmin/PDF/PPT__EKFZ_und_Forsa 2_Final.pdf
  18. PD Dr. Tobias Effertz, Susanne Engel, Frank Verheyen, Roland Linder: The costs and consequences of obesity in Germany: a new approach from a prevalence and life-cycle perspective, 2016, https://pubmed.ncbi.nlm.nih.gov/26701837/


Unverzichtbare Handlungsfelder aus Sicht der Menschen mit Diabetes – Probleme, Lösungen, Erfolge (S. 261-267)
  1. Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, Amadou C, Arnault G, Baudoux F, Bauduceau B, Borot S, Bourgeon-Ghittori M, Bourron O, Boutoille D, Cazenave-Roblot F, Chaumeil C, Cosson E, Coudol S, Darmon P, Disse E, Ducet-Boiffard A, Gaborit B, Joubert M, Kerlan V, Laviolle B, Marchand L, Meyer L, Potier L, Prevost G, Riveline JP, Robert R, Saulnier PJ, Sultan A, Thébaut JF, Thivolet C, Tramunt B, Vatier C, Roussel R, Gautier JF, Gourdy P; CORONADO investigators. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020 Aug;63(8):1500-1515. doi: 10.1007/s00125-020-05180-x. Epub 2020 May 29. Erratum in: Diabetologia. 2020 Jul 2;: PMID: 32472191; PMCID: PMC7256180.
  2. https://www.aerzteblatt.de/nachrichten/113357/COVID-19-Diabetiker-und-Krebspatienten-haben-deutlich-erhoehtes-Sterberisiko?rt=3e7a720f54ff3b6868ac22a56c16b69b
  3. DUT-Report 2020, Hrsg. B. Kulzer, L. Heinemann, Kirchheim Verlag
  4. https://www.epatient-analytics.com/aktuelles/pressemitteilung-zum-epatient-survey-q1-2021-digital-ist-nichts-normal
  5. https://www.cducsu.de/themen/familie-frauen-arbeit-gesundheit-und-soziales/dietrich-monstadt-vorbeugung-und-frueherkennung-von-diabetes-mellitus-ausbauen
  6. https://www.diabetesde.org/pressemitteilung/nationale-diabetesstrategie-nur-erste-begruessenswerte-schritt
  7. https://www.aerztekammer-bw.de/10aerzte/45aehealth/ePA/index.html
  8. DUT-Report 2020, Prof. Bernd Kulzer et. al
  9. https://www.deutsche-diabetes-gesellschaft.de/presse/ddg-pressemeldungen/meldungen-detailansicht/article/kinder-mit-diabetes-typ-1-in-schulen-und-kindergaerten-oft-benachteiligt-studien-zeigen-familiaer.html
  10. https://cdn.website-editor.net/4300a19a123c40fdb7f6ef7fed619d31/files/uploaded/Positionenpapier_DA.pdf
  11. https://cdn.website-editor.net/4300a19a123c40fdb7f6ef7fed619d31/files/uploaded/Positionenpapier_DA.pdf


Diabetes mellitus in Deutschland – politische Handlungsfelder 2021/22 (S. 268-274)
  1. Schumm-Draeger P, Kapitza T, Mann K, Fölsch UR, Müller-Wieland D. Ökonomisierung in der Medizin - Rückhalt für ärztliches Handeln. Dtsch Ärztebl. 2017; 114: A2238-40. https://www.deutsche-diabetes-gesellschaft.de/politik/projekte/klinik-codex (cited 15.07.21)
  2. Deutsche Diabetes Gesellschaft (DDG), Empfehlungen der DDG zur Nationalen Diabetesstrategie: Welche konkreten Maßnahmen müssen nun folgen? Politische_Empfehlungen_DDG_2021.pdf. https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen (cited 15.07.21)
  3. Gallwitz B, Kellerer M, Bitzer B, Müller-Wieland D, Neu A. Diabetes mellitus in Deutschland – Politische Handlungsfelder. In: Gesundheitsbericht Diabetes 2021, Kirchheim Vlg., Mainz 2020, S. 293-298
  4. Deutsche Diabetes Gesellschaft (DDG), Deutsches Zentrum für Diabetesforschung (DZD), Deutsche Gesellschaft für Endokrinologie (DGE). Gemeinsame Stellungnahme DDG / DZD / DGE zur Versorgung von Menschen mit Diabetes und endokrinen Erkrankungen. Ausbildungskapazitäten im Bereich Diabetologie und Endokrinologie müssen ausgebaut werden. https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen (cited 15.07.21)
  5. Ziegler R, Neu A: Diabetes in childhood and adolescence – a guideline-based approach to diagnosis, treatment, and follow-up. Dtsch Ärztebl Int 2018; 115: 146-46. DOI: 10.3238/arztebl.2018.0146
  6. Müller-Wieland D, Ickrath M. Rahmenpapier für einen Code of Conduct Digital Health der Deutschen Diabetes Gesellschaft (DDG) zur digitalen Transformation. https://www.deutsche-diabetes-gesellschaft.de/politik/projekte/code-of-conduct (cited 15.07.21)
  7. Deutsche Diabetes Gesellschaft (DDG), diabetesDE – Deutsche Diabetes-Hilfe, Verband der Diabetes Beratungs- und Schulungsberufe (VDBD). Nationale Diabetesstrategie –Kernpunkte eines nationalen Rahmenplans. Nationale Diabetesstrategie-Rahmenplan 2018 pdf. https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen (cited 15.07.21)