Der „Deutsche Gesundheitsbericht Diabetes“ wird jedes Jahr neu aufgelegt und beinhaltet die aktuellsten Zahlen und Entwicklungen zur Erkrankung Diabetes mellitus in Deutschland. Er wird in Zusammenarbeit mit zahlreichen Fachexperten erstellt und von der Deutschen Diabetes Gesellschaft und diabetesDE – Deutsche Diabetes-Hilfe herausgegeben.
Deutscher Gesundheitsbericht Diabetes 2023 – Literaturlisten
Klicken Sie auf eine Kapitelüberschrift, um die jeweilige Literaturliste einzusehen:
→Epidemiologie des Diabetes in Deutschland (Seite 10 – 15)
1. Tönnies T, Röckl S, Hoyer A et al.: Projected number of people with diagnosed type 2 diabetes in Germany in 2040. Diabet Med 2019; 36: 1217-1225
2. Rosenbauer J, Neu A, Rothe U, Seufert J, Holl RW: Types of diabetes are not limited to age groups: type 1 diabetes in adults and type 2 diabetes in children and adolescents. J Health Monit 2019; 4: 10.25646/5987
3. Heidemann C, Scheidt-Nave C: Prevalence, incidence and mortality of diabetes mellitus in adults in Germany – a review in the framework of the Diabetes Surveillance. J Health Monit 2017; 2: 98-121
4. Goffrier B, Schulz M, Bätzing-Feigenbaum J: Administrative Prävalenzen und Inzidenzen des Diabetes mellitus von 2009 bis 2015. Versorgungsatlas-Bericht 2017. 17/03: 10.20364/VA-17.03
5. Gregg EW, Cheng YJ, Srinivasan M et al.: Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet 2018; 391: 2430-2440
6. Carstensen B, Kristensen JK, Ottosen P, Borch-Johnsen K: The Danish National Diabetes Register: trends in incidence, prevalence and mortality. Diabetologia 2008; 51: 2187-2196
7. Lind M, Garcia-Rodriguez LA, Booth GL et al.: Mortality trends in patients with and without diabetes in Ontario, Canada and the UK from 1996 to 2009: a population-based study. Diabetologia 2013; 56: 2601-2608
8. Chen L, Islam RM, Wang J et al.: A systematic review of trends in all-cause mortality among people with diabetes. Diabetologia 2020; 63: 1718-1735
9. Gyldenkerne C, Knudsen JS, Olesen KKW et al.: Nationwide trends in cardiac risk and mortality in patients with incident type 2 diabetes: a Danish cohort study. Diabetes Care 2021; 11: dc210383. doi: 10.2337/dc21-0383. Online ahead of print
10. Pearson-Stuttard J, Bennett J, Cheng YJ et al.: Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol 2021; 9: 165-173
11. Jacobs E, Rathmann W: Epidemiologie des Diabetes. Diabetologie 2017; 12: 437-446
12. Schmidt C, Reitzle L, Dreß J et al.: Prävalenz und Inzidenz des dokumentierten Diabetes mellitus – Referenzauswertung für die Diabetes-Surveillance auf Basis von Daten aller gesetzlich Krankenversicherten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63: 93-102
13. Heidemann C, Du Y, Paprott R et al.: Temporal changes in the prevalence of diagnosed diabetes, undiagnosed diabetes and prediabetes: findings from the German Health Interview and Examination Surveys in 1997–1999 and 2008–2011. Diabet Med 2016; 33: 1406-1414
14. Boehme MW, Buechele G, Frankenhauser-Mannuss J et al.: Prevalence, incidence and concomitant co-morbidities of type 2 diabetes mellitus in South Western Germany - a retrospective cohort and case control study in claims data of a large statutory health insurance. BMC Public Health 2015; 15 (855). doi: 10.1186/s12889-015-2188-1
15. Jacobs E, Rathmann W, Tönnies T et al.: Age at diagnosis of type 2 diabetes in Germany: a nationwide analysis based on claims data from 69 million people in Germany. Diabet Med 2019; 37: 1723-1727
16. Reitzle L, Schmidt C, Heidemann C et al.: Gestationsdiabetes in Deutschland: Zeitliche Entwicklung von Screeningquote und Prävalenz. J Health Monit 2021; 6: 3-19
17. Barmer: "Diabetes-Atlas" der BARMER, Regionale Diabetesprävalenzen in Deutschland 2020. https://www.diabetesde.org/system/files/documents/diabetes-atlas_2020.pdf (letzter Zugriff: 09.06.2022)
18. Kauhl B, Pieper J, Schweikart J et al.: Die räumliche Verbreitung des Typ 2 Diabetes Mellitus in Berlin – Die Anwendung einer geografisch gewichteten Regressionsanalyse zur Identifikation ortsspezifischer Risikogruppen. Gesundheitswesen 2018; 80 (S 02): S64-S70
19. Kauhl B, Schweikart J, Krafft T et al.: Do the risk factors for type 2 diabetes mellitus vary by location? A spatial analysis of health insurance claims in Northeastern Germany using kernel density estimation and geographically weighted regression. Int J Health Geogr 2016; 15: 38
20. Maier W, Holle R, Hunger M et al.: The impact of regional deprivation and individual socio-economic status on the prevalence of type 2 diabetes in Germany. A pooled analysis of five population-based studies. Diabet Med 2013; 30: e78-e86
21. Kivimäki M, Vahtera J, Tabák AG et al.: Neighbourhood socioeconomic disadvantage, risk factors, and diabetes from childhood to middle age in the Young Finns Study: a cohort study. Lancet Public Health 2018; 3: e365-e373
22. Jacobs E, Tönnies T, Rathmann W et al.: Association between regional deprivation and type 2 diabetes incidence in Germany. BMJ Open Diabetes Res Care 2019; 7: e000857
23. Castillo-Reinado K, Maier W, Holle R et al.: Associations of area deprivation and urban/rural traits with the incidence of type 1 diabetes: analysis at the municipality level in North Rhine-Westphalia, Germany. Diabet Med 2020; 37: 2089-2097
24. Auzanneau M, Lanzinger S, Bohn B et al.: Area deprivation and regional disparities in treatment and outcome quality of 29,284 pediatric patients with type 1 diabetes in Germany: a cross-sectional multicenter DPV analysis. Diabetes Care 2018; 41: 2517-2525
25. Stockwell S, Trott M, Tully M et al.: Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: a systematic review. BMJ Open Sport Exerc Med 2021; 7: e000960
26. Damerow S, Rommel A, Prütz F et al.: Die gesundheitliche Lage in Deutschland in der Anfangsphase der COVID-19-Pandemie. Zeitliche Entwicklung ausgewählter Indikatoren der Studie GEDA-EHIS 2019. J Health Monit 2020; 5: 3-22
27. Wachtler B, Michalski N, Nowossadeck E et al.: Sozioökonomische Ungleichheit und COVID-19 – Eine Übersicht über den internationalen Forschungsstand. J Health Monit 2020; 5 (S7): 3-18
28. Rathmann W, Kuss O, Kostev K: Incidence of newly diagnosed diabetes after Covid-19. Diabetologia 2022; 65: 949–954
29. Kamrath C, Rosenbauer J, Eckert AJ et al.: Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV registry. Diabetes Care 2022; 17: dc210969. doi: 10.2337/dc21-0969. Online ahead of print
30. Tittel SR, Rosenbauer J, Kamrath C et al.: Did the COVID-19 lockdown affect the incidence of pediatric type 1 diabetes in Germany? Diabetes Care 2020; 43: e172-e173
31. Tamayo T, Brinks R, Hoyer A et al.: The prevalence and incidence of diabetes in Germany: an analysis of statutory health insurance data on 65 million individuals from the years 2009 and 2010. Dtsch Arztebl Int 2016; 113: 177-182
32. Manuwald U, Schoffer O, Kugler J et al.: Trends in incidence and prevalence of type 1 diabetes between 1999 and 2019 based on the Childhood Diabetes Registry of Saxony, Germany. PLoS One 2021; 16: e0262171
33. Jacobs E, Hoyer A, Brinks R et al.: Burden of mortality attributable to diagnosed diabetes: a nationwide analysis based on claims data from 65 million people in Germany. Diabetes Care 2017; 40: 1703-1709
34. Schmidt C, Reitzle L, Heidemann C et al.: Excess mortality in adults with documented diabetes in Germany: routine data analysis of all insurance claims in Germany 2013-2014. BMJ Open 2021; 11: e041508
35. Nanayakkara N, Curtis AJ, Heritier S et al.: Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: systematic review and meta-analyses. Diabetologia 2021; 64: 275-287
36. Tönnies T, Baumert J, Heidemann C et al.: Diabetes free life expectancy and years of life lost associated with type 2 diabetes: projected trends in Germany between 2015 and 2040. Popul Health Metr 2021; 19: 38
37. Lung TW, Hayes AJ, Herman WH et al.: A meta-analysis of the relative risk of mortality for type 1 diabetes patients compared to the general population: exploring temporal changes in relative mortality. PLoS One 2014; 9: e113635
38. Sandahl K, Nielsen LB, Svensson J et al.: Increased mortality in a Danish cohort of young people with type 1 diabetes mellitus followed for 24 years. Diabet Med 2017; 34: 380-386
39. Grauslund J: Long-term mortality and retinopathy in type 1 diabetes. Acta Ophthalmol 2010; 88 (thesis1): 1-14
→Risikoscreening, Risikokommunikation und Präventionsverhaltensmaßnahmen (Seite 16 – 22)
1. Ernst JB, Arens-Azevêdo U, Bitzer B et al. für Deutsche Adipositas-Gesellschaft, Deutsche Diabetes Gesellschaft und Deutsche Gesellschaft für Ernährung: Quantitative Empfehlung zur Zuckerzufuhr in Deutschland. Bonn, 2018
2. Knowler WC, Barrett-Connor E, Fowler SE et al.: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403
3. Schleicher E, Gerdes C, Petersmann A et al.: Definition, Klassifikation und Diagnostik des Diabetes mellitus: Update 2021. Diabetologie 2021; 16 (Suppl 2): S110–S118
4. US Preventive Services Task Force: Screening for prediabetes and type 2 diabetes – US Preventive Services Task Force Recommendation Statement. JAMA 2021; 326: 736-743
5. American Diabetes Association Professional Practice Committee: 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022; 45 (Suppl 1): S17–S38
6. Prütz F, Rommel A, Thom J, Du Y, Sarganas G, Starker A: Inanspruchnahme ambulanter medizinischer Leistungen in Deutschland – Ergebnisse der Studie GEDA 2019/2020-EHIS. J Health Monit 2021; 6: 49-71
7. Chung WK, Erion K, Florez JC et al.: Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020; 63: 1671-1693
8. Kengne AP, Beulens JW, Peelen LM et al.: Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol 2014; 2: 19-29
9. FINDRISK – Test für Diabetesrisiko. Diabetologie 2021; 16 (Suppl 2): S427–S428
10. Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke: DIfE – DEUTSCHER DIABETES-RISIKO-TEST®. Diabetologie 2021; 16 (Suppl 2): S429–S432
11. Paprott R, Muhlenbruch K, Mensink GB et al.: Validation of the German Diabetes Risk Score among the general adult population: findings from the German Health Interview and Examination Surveys. BMJ Open Diabetes Res Care 2016; 4: e000280
12. Schulze MB, Hoffmann K, Boeing H et al.: An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 2007; 30: 510-515
13. Muhlenbruch K, Ludwig T, Jeppesen C et al.: Update of the German Diabetes Risk Score and external validation in the German MONICA/KORA study. Diabetes Res Clin Pract 2014; 104: 459-466
14. Muhlenbruch K, Paprott R, Joost HG et al.: Derivation and external validation of a clinical version of the German Diabetes Risk Score (GDRS) including measures of HbA1c. BMJ Open Diabetes Res Care 2018; 6: e000524
15. Paprott R, Mensink GBM, Schulze MB et al.: Temporal changes in predicted risk of type 2 diabetes in Germany: findings from the German Health Interview and Examination Surveys 1997-1999 and 2008-2011. BMJ open 2017; 7: e013058
16. Gesetz zur Stärkung der Gesundheitsförderung und der Prävention vom 17. Juli 2015. Sect. Bundesgesetzblatt, Jahrgang 2015, Teil I Nr.31
17. Schempp N, Römer K; Medizinischer Dienst des Spitzenverbandes Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2021, Berichtsjahr 2020
18. Schempp N, Strippel H; Medizinischer Dienst des Spitzenverbandes Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2017, Berichtsjahr 2016
19. Bauer S, Römer K; Medizinischer Dienst des Spitzenverbandes Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2018, Berichtsjahr 2017
20. Bauer S, Römer K, Geiger L; Medizinischer Dienst des Spitzenverbandes Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2019, Berichtsjahr 2018
21. Bauer S, Geiger L, Niggemann R, Seidel J; Medizinischer Dienst des Spitzenverbandes Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2020, Berichtsjahr 2019
22. Weinstein ND: Perceived probability, perceived severity, and health-protective behavior. Health Psychol 2000; 19: 65-74
23. Weinstein ND: Unrealistic optimism about future life events. J Pers Soc Psychol 1980; 39: 806-820
24. Heidemann C, Paprott R, Stühmann LM et al.: Perceived diabetes risk and related determinants in individuals with high actual diabetes risk: results from a nationwide population-based survey. BMJ Open Diab Res Care 2019; 7: e000680
→Ernährung in der Diabetesprävention: Aspekte 2022/23 – Intervallfasten im Trend (Seite 23 – 27)
1. Rynders CA, Thomas EA, Zaman A et al.: Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients 2019; 11. doi:10.3390/nu11102442
2. Mattson MP, Longo VD, Harvie M: Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017; 39: 46–58. doi: 10.1016/j.arr.2016.10.005
3. Mager DE, Wan R, Brown M et al.: Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J 2006; 20: 631–637. doi: 10.1096/fj.05-5263com
4. Anson RM, Guo Z, de Cabo R et al.: Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl Acad Sci USA 2003; 100: 6216–6220. doi: 10.1073/pnas.1035720100
5. Gotthardt JD, Verpeut JL, Yeomans BL et al.: Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology 2016; 157: 679–691. doi: 10.1210/en.2015-1622
6. Anton SD, Moehl K, Donahoo WT et al.: Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity 2018; 26: 254–268. doi: 10.1002/oby.22065
7. Chaix A, Zarrinpar A, Miu P, Panda S et al: Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 2014; 20: 991–1005. doi: 10.1016/j.cmet.2014.11.001
8. Chaix A, Lin T, Le HD et al.: Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 2019; 29: 303–319.e304. doi: 10.1016/j.cmet.2018.08.004
9. Hatori M, Vollmers C, Zarrinpar A et al.: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15: 848–860. doi: 10.1016/j.cmet.2012.04.019
10. Zarrinpar A, Chaix A, Yooseph S, Panda S et al.: Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 2014; 20: 1006–1017. doi: 10.1016/j.cmet.2014.11.008
11. Arble DM, Bass J, Laposky AD et al.: Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009; 17: 2100-2102. doi: 10.1038/oby.2009.264
12. Damiola F, Minh NL, Preitner N et al.: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus Genes Dev 2000; 14: 2950-2961. doi: 10.1101/gad.183500
13. Ulgherait M, Midoun AM, Park SJ et al.: Circadian autophagy drives iTRF-mediated longevity. Nature 2021; 598 (7880): 353-358
14. Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M et al.: Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 2022; 376 (6598): 1192-1202. Epub 2022 May 5. doi: 10.1126/science.abk0297
15. Chaix A, Zarrinpar A: The effects of time-restricted feeding on lipid metabolism and adiposity. Adipocyte 2015; 4: 319–324. doi: 10.1080/21623945.2015.1025184
16. Jahrami HA, Alsibai J, Clark CCT, Faris MAE: A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on body weight in healthy subjects aged 16 years and above. Eur J Nutr 2020; 59: 2291-2316
17. Fernando HA, Zibellini J, Harris RA et al.: Effect of Ramadan fasting on weight and body composition in healthy non-athlete adults: a systematic review and meta-analysis. Nutrients 2019; 11: 478
18. Faris MA, Jahrami H, BaHammam A et al.: A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on glucometabolic markers in healthy subjects. Diabetes Res Clin Pract 2020; 165: 108226
19. Jahrami HA, Faris ME, I Janahi A et al.: Does four-week consecutive, dawn-to-sunset intermittent fasting during Ramadan affect cardiometabolic risk factors in healthy adults? A systematic review, meta-analysis, and meta-regression. Nutr Metab Cardiovasc Dis 2021; 31: 2273-2301
20. Mirmiran P, Bahadoran Z, Gaeini Z et al.: Effects of Ramadan intermittent fasting on lipid and lipoprotein parameters: An updated meta-analysis. Nutr Metab Cardiovasc Dis 2019; 29: 906-915
21. Faris M, Jahrami H, Abdelrahim D et al.: The effects of Ramadan intermittent fasting on liver function in healthy adults: a systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract 2021; 178: 108951
22. Al-Jafar R, Zografou Themeli M, Zaman S et al.: Effect of religious fasting in Ramadan on blood pressure: results from LORANS (London Ramadan Study) and a meta-analysis. J Am Heart Assoc 2021; 10: e021560. doi: 10.1161/JAHA.120.021560
23. Abaïdia AE, Daab W, Bouzid MA: Effects of Ramadan fasting on physical performance: a systematic review with meta-analysis. Sports Med 2020; 50: 1009-1026
24. Correia JM, Santos I, Pezarat-Correia P et al.: Effects of intermittent fasting on specific exercise performance outcomes: a systematic review including meta-analysis. Nutrients 2020; 12: 1390
25. Oosterwijk VNL, Molenaar JM, van Bilsen LA, Kiefte-de Jong JC: Ramadan fasting during pregnancy and health outcomes in offspring: a systematic review. Nutrients 2021; 13: 3450
26. Glazier JD, Hayes DJL, Hussain S et al.: The effect of Ramadan fasting during pregnancy on perinatal outcomes: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2018; 18: 421
27. Tahapary DL, Astrella C, Kristanti M et al.: The impact of Ramadan fasting on metabolic profile among type 2 diabetes mellitus patients: a meta-analysis. Diabetes Metab Syndr 2020; 14: 1559-1570
28. Lee SWH, Lee JY, Tan CSS, Wong CP: Strategies to make Ramadan fasting safer in type 2 diabetics: a systematic review and network meta-analysis of randomized controlled trials and observational studies. Medicine (Baltimore) 2016; 95: e2457
29. Shiju R, Akhil A, Thankachan S et al.: Safety assessment of glucose-lowering drugs and importance of structured education during Ramadan: a systematic review and meta-analysis. J Diabetes Res 2022; 2022: 3846253
30. Tourkmani AM, Abdelhay O, Alharbi TJ et al.: Impact of Ramadan-focused diabetes education on hypoglycemia risk and metabolic control for patients with type 2 diabetes mellitus: a systematic review. Int J Clin Pract 2021; 75: e13817
31. Loh HH, Lim LL, Loh HS, Yee A: Safety of Ramadan fasting in young patients with type 1 diabetes: A systematic review and meta-analysis. J Diabetes Investig 2019; 10: 1490-1501
32. Wicherski J, Schlesinger S, Fischer F: Association between breakfast skipping and body weight – a systematic review and meta-analysis of observational longitudinal studies. Nutrients 2021; 13: 272
33. Ma X, Chen Q, Pu Y et al.: Skipping breakfast is associated with overweight and obesity: a systematic review and meta-analysis. Obes Res Clin Pract 2020; 14: 1-8
34. Bi H, Gan Y, Yang C et al.: Breakfast skipping and the risk of type 2 diabetes: a meta-analysis of observational studies. Public Health Nutr 2015; 18: 3013-3019
35. Ballon A, Neuenschwander M, Schlesinger S: Breakfast skipping is associated with increased risk of type 2 diabetes among adults: a systematic review and meta-analysis of prospective cohort studies. J Nutr 2019; 149: 106-113
36. Li Z, Li H, Xu Q, Long Y: Skipping breakfast is associated with hypertension in adults: a meta-analysis. Int J Hypertens 2022; 2022: 7245223
37. Zhu S, Cui L, Zhang X et al.: Habitually skipping breakfast is associated with chronic inflammation: a cross-sectional study. Public Health Nutr 2021; 24: 2936-2943
38. Sharma K, Shah K, Brahmbhatt P, Kandre Y: Skipping breakfast and the risk of coronary artery disease. QJM 2018; 111: 715-719
39. Yamamoto R, Tomi R, Shinzawa M et al.: Associations of skipping breakfast, lunch, and dinner with weight gain and overweight/obesity in university students: a retrospective cohort study. Nutrients 2021; 13: 271
40. Kollannoor-Samuel G, Chhabra J, Fernandez ML et al.: Determinants of fasting plasma glucose and glycosylated hemoglobin among low income Latinos with poorly controlled type 2 diabetes. J Immigr Minor Health 2011; 13: 809-817
41. Giménez-Legarre N, Miguel-Berges ML, Flores-Barrantes P et al.: Breakfast characteristics and its association with daily micronutrients intake in children and adolescents – a systematic review and meta-analysis. Nutrients 2020; 12: 3201
42. Pendergast FJ, Livingstone KM, Worsley A, McNaughton SA: Examining the correlates of meal skipping in Australian young adults. Nutr J 2019; 18: 24
43. Qorbani M, Kasaeian A, Rafiemanzelat AM: Social inequalities in meal skipping patterns among children and adolescents: The CASPIAN-V study. Obes Sci Pract 2021; 7: 690-698
44. Borgundvaag E, Mak J, Kramer CK: Metabolic impact of intermittent fasting in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of interventional studies. J Clin Endocrinol Metab 2021; 106: 902-911
45. Wang X, Li Q, Liu Y et al.: Intermittent fasting versus continuous energy-restricted diet for patients with type 2 diabetes mellitus and metabolic syndrome for glycemic control: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2021; 179: 109003
46. Meng H, Zhu L, Kord-Varkaneh H et al.: Effects of intermittent fasting and energy-restricted diets on lipid profile: a systematic review and meta-analysis. Nutrition 2020; 77: 110801
47. Moon S, Kang J, Kim SH et al.: Beneficial effects of time-restricted eating on metabolic diseases: a systemic review and meta-analysis. Nutrients 2020; 12: 1267
48. Allaf M, Elghazaly H, Mohamed OG et al.: Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev 2021; 1: CD013496
49. Pureza IROM, Macena ML, da Silva Junior AE et al.: Effect of early time-restricted feeding on the metabolic profile of adults with excess weight: a systematic review with meta-analysis. Clin Nutr 2021; 40: 1788-1799
50. Semnani-Azad Z, Khan T, Kabisch S et al.: Effect of intermittent fasting strategies on cardiometabolic risk factors: a systematic review and network meta-analysis of randomized controlled trials. Curr Dev Nutr 2021; 5 (Suppl 2): 1091
51. Templeman I, Smith HA, Chowdhury E et al.: A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021; 13 (598): eabd8034
52. Lowe DA, Wu N, Rohdin-Bibby L et al.: Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern Med 2020; 180: 1491-1499. doi: 10.1001/jamainternmed.2020.4153. Erratum in: JAMA Intern Med 2020; 180: 1555
53. Hong J, Shin WK, Lee JW, Kim Y: Relationship between protein intake and sarcopenia in the elderly with nonalcoholic fatty liver disease based on the fourth and fifth Korea National Health and Nutrition Examination Survey. Metab Syndr Relat Disord 2021; 19: 452-459
54. Jun S, Cowan AE, Dwyer JT et al.: Dietary protein intake is positively associated with appendicular lean mass and handgrip strength among middle-aged US adults. J Nutr 2021; 151: 3755-3763
→Sitzen ist das neue Rauchen – Wege vom unbewegten zum bewegten Menschen mit Diabetes (Seite 28 – 33)
1. Starrett K, Cordoza G, Starrett J: Sitzen ist das neue Rauchen. Riva, München, 2016
2. Morris JN, Heady JA, Raffle PA et al.: Coronary heart-disease and physical activity of work. Lancet 1953; 262 (6795): 1053-1057. doi: 10.1016/s0140-6736(53)90665-5
3. Dunstan DW, Dogra S, Carter SE, Owen N: Sit less and move more for cardiovascular health: emerging insights and opportunities. Nat Rev Cardiol 2021; 18: 637-648. doi: 10.1038/s41569-021-00547-y. Epub 2021 May 20. PMID: 34017139
4. van der Berg JD, Stehouwer CD, Bosma H et al.: Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The Maastricht Study. Diabetologia 2016; 59: 709-718. doi: 10.1007/s00125-015-3861-8
5. Kennerly AM, Kirk A: Physical activity and sedentary behaviour of adults with type 2 diabetes: a systematic review. Practical Diabetes 2018; 35: 86–89g. doi:10.1002/pdi.2169
6. Patterson R, McNamara E, Tainio M et al.: Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol 2018; 33: 811-829. doi:10.1007/s10654-018-0380-1
7. Bowden Davies KA, Sprung VS, Norman JA et al.: Short-term decreased physical activity with increased sedentary behaviour causes metabolic derangements and altered body composition: effects in individuals with and without a first-degree relative with type 2 diabetes. Diabetologia 2018; 61: 1282–1294. doi:10.1007/s00125-018-4603-5
8. Loh R, Stamatakis E, Folkerts D et al.: Effects of interrupting prolonged sitting with physical activity breaks on blood glucose, insulin and triacylglycerol measures: a systematic review and meta-analysis. Sports Med 2020; 50: 295-330. doi: 10.1007/s40279-019-01183-w
9. Duvivier BM, Schaper NC, Hesselink MK et al.: Breaking sitting with light activities vs structured exercise: a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes. Diabetologia 2017; 60: 490-498. doi: 10.1007/s00125-016-4161-7
10. Han HO, Lim J, Viskochil R et al.: Pilot study of impact of a pedal desk on postprandial responses in sedentary workers. Med Sci Sports Exerc 2018; 50: 2156–2163. doi:10.1249/MSS.0000000000001679
11. Ekelund U, Ward HA, Norat T et al.: Physical activity and all-cause mortality across levels of overall and abdominal adiposity in European men and women: the European Prospective Investigation into Cancer and Nutrition Study (EPIC). Am J Clin Nutr 2015; 101: 613–621
12. Hall G, Laddu DR, Phillips SA et al.: A tale of two pandemics: How will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog Cardiovasc Dis 2021; 64: 108–110
13. Wunsch K, Kienberger K, Niessner C: Changes in physical activity patterns due to the Covid-19 pandemic: a systematic review and meta-analysis. Int J Environ Res Public Health 2022; 19: 2250. doi:10.3390/ijerph19042250
14. Lee IM, Shiroma EJ, Lobelo F et al.: Impact of physical inactivity on the world’s major non-communicable diseases. Lancet 2012; 380: 219–229. doi: 10.1016/S0140-6736[12]61031-9
15. Hamer M, Kivimäki M, Gale CR, Batty GD: Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK. Brain Behav Immun 2020; 87: 184–187. doi: 10.1016/j.bbi.2020.05.05
16. Sallis R, Young DR, Tartof SY et al.: Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br J Sports Med 2021; 55: 1099-1105
17. Marçal IR, Fernandes B, Viana AA, Ciolac EG: The urgent need for recommending physical activity for the management of diabetes during and beyond COVID-19 outbreak. Front Endocrinol 2020; 11: 584642. doi: 10.3389/fendo.2020.584642
18. Mustapa A, Justine M, Latir AA, Manaf H: Home-based physical activity in patients with type 2 diabetes mellitus: a scoping review. Ann Rehabil Med 2021; 45: 345-358. doi: 10.5535/arm.21102
19. Petrak F, Meier JJ, Albus C et al.: Motivation und Diabetes – Zeit für einen Paradigmenwechsel? – Ein Positionspapier. Diabetologie 2019; 14: 193-203
20. Rudinger G: Gesundheitskompetenz – Schlüsselqualifikation für ein gesundes Leben. Diabetologe 2015; 11: 645-648
21. von Manteufel L: Nachhaltige Bewegungstherapie. Dtsch Arztebl 2016; 113: 1527-1529
22. Kang HJ, Wang JCK, Burns SF, Leow MKS: Is self-determined motivation a useful agent to overcome perceived exercise barriers in patients with type 2 diabetes mellitus? Front Psychol 2021; 12: 627815. doi: 10.3389/fpsyg.2021.627815
23. Miller WR, Rollnick S: Motivational interviewing: Preparing people for change. Guilford Press, New York, 2002
24. Doupis J, Karras K, Avramidis K: The role of individualized exercise prescription in type 2 diabetes mellitus management. touchREV Endocrinol 2021; 17: 2–4
25. Sjöling M, Lundberg K, Englund E et al.: Effectiveness of motivational interviewing and physical activity on prescription on leisure exercise time in subjects suffering from mild to moderate hypertension. BMC Research Notes 2011; 4: 352. http://www.biomedcentral.com/1756-0500/4/352
26. Prochaska, JO, DiClemente CC, Norcross JC: In search of how people change: Applications to addictive behaviors. Am Psychol 1992; 47: 1102-1114
27. Lucini D, Pagani M: Exercise prescription to foster health and well-being: a behavioral approach to transform barriers into opportunities. Int J Environ Res Public Health 2021; 18: 968. doi: 10.3390/ijerph18030968
28. Zuckerman M, Porac J, Lathin D, Deci E: On the importance of self-determination for intrinsically-motivated behavior. Personality and Social Psychology Bulletin 1978; 4: 443-446
29. Waryasz GR, McDermott AY: Exercise prescription and the patient with type 2 diabetes: a clinical approach to optimizing patient outcomes. J Am Acad Nurse Pract 2010; 22: 217-227. doi: 10.1111/j.1745-7599.2010.00490.x
30. Kennerly AM, Kirk A: Physical activity and sedentary behaviour of adults with type 2 diabetes: a systematic review. Practical Diabetes 2018; 35: 86–89g. doi: 10.1002/pdi.2169
→Adipositas in Deutschland aus Sicht von DAG und DDG (Seite 34 – 38)
1. Mensink GBM, Schienkiewitz A, Haftenberger M et al.: Übergewicht und Adipositas in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 2013; 56: 786–794. doi: 10.1007/s00103-012-1656-3
2. Schienkiewitz A, Brettschneider AK, Damerow S, Schaffrath Rosario A: Übergewicht und Adipositas im Kindes- und Jugendalter in Deutschland – Querschnittergebnisse aus KiGGS Welle 2 und Trends. J Health Monit 2018; 3: 16–23
3. Vogel M, Geserick M, Gausche R et al.: Age- and weight group-specific weight gain patterns in children and adolescents during the 15 years before and during the COVID-19 pandemic. Int J Obes 2022; 46: 144–152
4. Galler A, Röbl M, Prinz N et al.: Weight development in children and adolescents with obesity during the COVID-19 pandemic. Dtsch Arztebl Int 2022; 119: 302-303. doi: 10.3238/arztebl.m2022.0155. PMID: 35912532
5. DAK-Gesundheit: Kinder- und Jugendreport 2021: Gesundheitsversorgung von Kindern und Jugendlichen in Deutschland. Schwerpunkt: Suchterkrankungen. November 2021
6. DAG, EKFZ für Ernährungsmedizin: Wie Corona das Gesundheitsverhalten von Kindern und Jugendlichen verändert hat. Ergebnisse einer repräsentativen Elternbefragung. 2021. https://adipositas-gesellschaft.de/forsa-umfrage-zeigt-folgen-der-corona-krise-fuer-kinder-gewichtszunahme-weniger-bewegung-mehr-suesswaren-jedes-sechste-kind-ist-dicker-geworden/
7. Vygen-Bonnet S, Koch J, Bogdan C et al.: Beschluss und Wissenschaftliche Begründung der Ständigen Impfkommission (STIKO) für die COVID-19-Impfempfehlung. Epid Bull 2021; 2: 3-63. doi: 10.25646/7755
8. Recalde M, Pistillo A, Fernandez-Bertolin S et al.: Body mass index and risk of COVID-19 diagnosis, hospitalization, and death: a cohort study of 2 524 926 Catalans. J Clin Endocrinol Metab 2021; 106: e5030-e5042. doi: 10.1210/clinem/dgab546
9. Ebd.
10. Gao M, Piernas C, Astbury NM et al.: Associations between body-mass index and COVID-19 severity in 6.9 million people in England: a prospective, community-based cohort study. Lancet Diabetes Endocrinol 2021; 9: 6
11. Zickler M, Stanelle-Bertram S, Ehret S et al.: Replication of SARS-CoV-2 in adipose tissue determines organ and systemic lipid metabolism in hamsters and humans. Cell Metab 2022; 34: 1-2. doi: 10.1016/j.cmet.2021.12.002. Epub 2021 Dec 10
12. Reiterer M, Rajan M, Gómez-Banoy N et al.: Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab 2021; 33: 2174-2188.e5. doi: 10.1016/j.cmet.2021.09.009. Epub 2021 Sep 16. Erratum in: Cell Metab. 2021; 33: 2484
13. Galler A, Röbl M, Prinz N et al.: Weight development in children and adolescents with obesity during the COVID-19 pandemic. Dtsch Arztebl Int 2022; 119: 302-303. doi: 10.3238/arztebl.m2022.0155
14. DAK-Gesundheit: Kinder- und Jugendreport 2021: Gesundheitsversorgung von Kindern und Jugendlichen in Deutschland. Schwerpunkt: Suchterkrankungen. November 2021
15. Vogel M, Geserick M, Gausche R et al.: Age- and weight group-specific weight gain patterns in children and adolescents during the 15 years before and during the COVID-19 pandemic. Int J Obes 2022; 46: 144–152
16. DAG, EKFZ für Ernährungsmedizin: Wie Corona das Gesundheitsverhalten von Kindern und Jugendlichen verändert hat. Ergebnisse einer repräsentativen Elternbefragung. 2021: https://adipositas-gesellschaft.de/forsa-umfrage-zeigt-folgen-der-corona-krise-fuer-kinder-gewichtszunahme-weniger-bewegung-mehr-suesswaren-jedes-sechste-kind-ist-dicker-geworden/
17. Damerow S, Rommel A, Prütz F et al.: Die gesundheitliche Lage in Deutschland in der Anfangsphase der COVID-19-Pandemie. Zeitliche Entwicklung ausgewählter Indikatoren der Studie GEDA 2019/2020-EHIS. J Health Monit 2020; 5: 3–22. doi: 10.25646/7171.2
18. Forsa-Befragung im Auftrag des Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ) an der Technische Universität München. 2021. https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/36713/
19. Forsa-Befragung im Auftrag des Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ) an der Technische Universität München. 2022. https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/37537
20. WHO-Regionalbüro für Europa. New WHO report: Europe can reverse ist obesity "epidemic". 2022. https://www.who.int/europe/news/item/03-05-2022-new-who-report--europe-can-reverse-its-obesity--epidemic
21. Aberle J, Blüher M: Adipositas in Deutschland aus Sicht der DDG und der DAG. In: Deutsche Diabetes Gesellschaft, diabetesDE - Deutsche Diabetes-Hilfe (Hrsg.): Deutscher Gesundheitsbericht Diabetes 2022. Kirchheim, Mainz, 2021
22. vgl. ebd.
23. Sumithran P, Prendergast LA, Delbridge E: Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365: 1597-1604
24. Pasman WJ: Predictors of weight maintenance. Obes Res 1999; 7: 43-50
25. Schwartz A: Relative changes in resting energy expenditure during weight loss: a systematic review. Obes Rev 2010; 11: 531-547
26. Dulloo A: Physiology of weight regain: Lessons from the classic Minnesota Starvation Experiment on human body composition regulation. Obes Rev 2021; 22 (Suppl 2): e13189
27. Martins C, Dutton GR, Hunter GR, Gower BA: Revisiting the Compensatory Theory as an explanatory model for relapse in obesity management. Am J Clin Nutr 2020; 112: 1170-1179
→Immunologie des Typ-1-Diabetes: ein Update (Seite 39 – 43)
1. Battaglia M, Ahmed S, Anderson MS et al.: Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. Diabetes Care 2020; 43: 5-12
2. Rawshani A, Sattar N, Franzén S et al.: Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018; 392 (10146): 477-486
3. Leete P, Oram RA, McDonald TJ et al.: Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 2020; 63: 1258-1267
4. Arif S, Leete P, Nguyen V et al.: Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes 2014; 63: 3835-3845
5. Leete P, Willcox A, Krogvold L et al.: Differential insulitic profiles determine the extent of beta-cell destruction and the age at onset of type 1 diabetes. Diabetes 2016; 65: 1362-1369
6. Ziegler AG, Nepom GT: Prediction and pathogenesis in type 1 diabetes. Immunity 2010; 32: 468-478
7. Serr I, Fürst RW, Ott VB et al.: miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A 2016; 113: E6659-E6668
8. Serr I, Scherm MG, Zahm AM et al.: A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Sci Transl Med 2018; 10: eaag1782
9. Scherm MG, Serr I, Zahm AM et al.: miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nat Commun 2019; 10: 5697
10. Serr I, Fürst RW, Achenbach P et al.: Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice. Nat Commun 2016; 7: 10991
11. Sims EK, Bundy BN, Stier K et al.: Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med 2021; 13: eabc8980
→Betazellersatztherapie für Patienten mit Typ-1-Diabetes: aktueller Stand (Seite 44 – 49)
1. Kelly WD, Lillehei RC, Merkel FK et al.: Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967; 61: 827–837
2. Najarian JS, Sutherland DE, Matas AJ et al.: Human islet transplantation: a preliminary report. Transplant. Proc 1977; 9; 233–236
3. Najarian JS, Sutherland DE, Matas AJ, Goetz FC: Human islet autotransplantation following pancreatectomy. Transplant Proc 1979; 11: 336–340
4. Ramzy A, Thompson DM, Ward-Hartstonge KA et al.: Implanted pluripotent stem cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 2021; 28: 2047-2061.e5
5. Shapiro AMJ, Thompson D, Donner TW et al.: Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Reports Medicine 2021; 2: 100466
6. Steffes MW, Sibley S, Jackson M, Thomas W: Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 2003; 26: 832-836
7. D’Amour KA, Bang AG, Eliazer S et al.: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006; 24: 1392–1401
8. Kroon E, Martinson LA, Kadoya K et al.: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26: 443–452
9. Jeyam A, Colhoun H, McGurnaghan S et al.; SDRNT1BIO Investigators: Clinical impact of residual C-peptide secretion in type 1 diabetes on glycemia and microvascular complications. Diabetes Care 2021; 44: 390–398
10. Pagliuca FW, Millman JR, Gurtler M et al.: Generation of functional human pancreatic b cells in vitro. Cell 2014; 159: 428–439
→COVID-19-Pandemie: Inzidenz und Ketoazidose bei Manifestation des Typ-1-Diabetes bei Kindern und Jugendlichen (Seite 50 – 60)
1. Rosenbauer J, Kamrath C, Neu A, Holl RW: COVID-19-Pandemie: Auswirkungen auf die Inzidenz des Typ-1-Diabetes bei Kindern und Jugendlichen. In: Deutsche Diabetes Gesellschaft (DDG), diabetesDE – Deutsche Diabetes-Hilfe (Hrsg.): Deutscher Gesundheitsbericht Diabetes 2022. Kirchheim, Mainz, 2021: 62-70
2. Rahmati M, Keshvari M, Mirnasuri S et al.: The global impact of COVID-19 pandemic on the incidence of pediatric new-onset type 1 diabetes and ketoacidosis: a systematic review and meta-analysis. J Med Virol 2022. doi: 10.1002/jmv.27996
3. McGlacken-Byrne SM, Drew SEV, Turner K et al.: The SARS-CoV-2 pandemic is associated with increased severity of presentation of childhood onset type 1 diabetes mellitus: a multi-centre study of the first COVID-19 wave. Diabet Med 2021; 38: e14640
4. Unsworth R, Wallace S, Oliver NS et al.: New-onset type 1 diabetes in children during COVID-19: multicenter regional findings in the U.K. Diabetes Care 2020; 43: e170-e171
5. Abdou M, Hassan MM, Hassanein SA et al.: Presentations, complications, and challenges encountered during management of type 1 diabetes in Egyptian children during COVID-19 pandemic: a single-center experience. Front Endocrinol (Lausanne) 2022; 13: 814991
6. Alassaf A, Gharaibeh L, Ibrahim S et al.: Effect of COVID-19 pandemic on presentation and referral patterns of newly diagnosed children with type 1 diabetes in a developing country. J Pediatr Endocrinol Metab 2022; 35: 859-866
7. Chambers MA, Mecham C, Arreola EV, Sinha M: Increase in the number of pediatric new-onset diabetes and diabetic ketoacidosis cases during the COVID-19 pandemic. Endocr Pract 2022; 28: 479-485
8. Cherubini V, Marino M, Scaramuzza AE et al.: The silent epidemic of diabetic ketoacidosis at diagnosis of type 1 diabetes in children and adolescents in Italy during the COVID-19 pandemic in 2020. Front Endocrinol (Lausanne) 2022; 13: 878634
9. Gottesman BL, Yu J, Tanaka C et al.: Incidence of new-onset type 1 diabetes among US children during the COVID-19 global pandemic. JAMA Pediatr 2022; 176: 414-415
10. Kaya G, Cimbek EA, Yesilbas O et al.: A long-term comparison of presenting characteristics of children with newly diagnosed type 1 diabetes before and during the COVID-19 pandemic. J Clin Res Pediatr Endocrinol 2022. doi: 10.4274/jcrpe.galenos.2021.2021-10-2
11. Lee Y, Kim M, Oh K et al.: Comparison of initial presentation of pediatric diabetes before and during the coronavirus disease 2019 pandemic era. J Korean Med Sci 2022; 37: e176
12. Leiva-Gea I, Fernandez CA, Cardona-Hernandez R et al.: Increased presentation of diabetic ketoacidosis and changes in age and month of type 1 diabetes at onset during the COVID-19 pandemic in Spain. J Clin Med 2022; 11: 4338
13. Luciano TM, Halah MP, Sarti MTA et al.: DKA and new-onset type 1 diabetes in Brazilian children and adolescents during the COVID-19 pandemic. Arch Endocrinol Metab 2022; 66: 88-91
14. Mastromauro C, Blasetti A, Primavera M et al.: Peculiar characteristics of new-onset type 1 diabetes during COVID-19 pandemic. Ital J Pediatr 2022; 48: 26
15. Pillai SS, Cao C, Drees CJ et al.: Delays in presentation of new onset diabetes at the start of the COVID-19 pandemic. R I Med J (2013) 2022; 105 (5): 46-50
16. Rusak E, Seget S, Macherski M et al.: Has the COVID-19 pandemic affected the prevalence of diabetic ketoacidosis in Polish children with newly diagnosed type 1 diabetes? An example of the largest Polish pediatric diabetes center (Upper Silesia-Katowice, Poland). Healthcare (Basel) 2022; 10: 348
17. Wolf RM, Noor N, Izquierdo R et al.: Increase in newly diagnosed type 1 diabetes in youth during the COVID-19 pandemic in the United States: a multi-center analysis. Pediatr Diabetes 2022; 23: 433-438
18. Al-Abdulrazzaq D, Alkandari A, Alhusaini F et al.: Higher rates of diabetic ketoacidosis and admission to the paediatric intensive care unit among newly diagnosed children with type 1 diabetes in Kuwait during the COVID-19 pandemic. Diabetes Metab Res Rev 2022; 38: e3506
19. Kamrath C, Rosenbauer J, Eckert AJ et al.: Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV registry. Diabetes Care 2022; 45: 1762-1771
20. Mameli C, Scaramuzza A, Macedoni M et al.: Type 1 diabetes onset in Lombardy region, Italy, during the COVID-19 pandemic: the double-wave occurrence. EClinicalMedicine 2021; 39: 101067
21. Pietrzak I, Michalak A, Seget S et al.: Diabetic ketoacidosis incidence among children with new-onset type 1 diabetes in Poland and its association with COVID-19 outbreak-Two-year cross-sectional national observation by PolPeDiab Study Group. Pediatr Diabetes 2022; 23: 944-955
22. Shulman R, Cohen E, Stukel TA et al.: Examination of trends in diabetes incidence among children during the COVID-19 pandemic in Ontario, Canada, from March 2020 to September 2021. JAMA Netw Open 2022; 5: e2223394
23. Vlad A, Serban V, Timar R et al.: Increased incidence of type 1 diabetes during the COVID-19 pandemic in Romanian children. Medicina (Kaunas) 2021; 57: 973
24. Salmi H, Heinonen S, Hastbacka J et al.: New-onset type 1 diabetes in Finnish children during the COVID-19 pandemic. Arch Dis Child 2022; 107: 180-185
25. Kamrath C, Rosenbauer J, Tittel SR et al.: Frequency of autoantibody-negative type 1 diabetes in children, adolescents, and young adults during the first wave of the COVID-19 pandemic in Germany. Diabetes Care 2021; 44: 1540-1546
26. Barrett CE, Koyama AK, Alvarez P et al.: Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged <18 years – United States, March 1, 2020-June 28, 2021. MMWR Morb Mortal Wkly Rep 2022; 71 (2): 59-65
27. McKeigue PM, McGurnaghan S, Blackbourn L et al.: Relation of incident type 1 diabetes to recent COVID-19 infection: cohort study using e-health record linkage in Scotland. Diabetes Care 2022 Jul 26: dc220385. doi: 10.2337/dc22-0385. Epub ahead of print
28. Qeadan F, Tingey B, Egbert J et al.: The associations between COVID-19 diagnosis, type 1 diabetes, and the risk of diabetic ketoacidosis: a nationwide cohort from the US using the Cerner Real-World Data. PLoS One 2022; 17: e0266809
29. Aldujeli A, Hamadeh A, Briedis K et al.: Delays in presentation in patients with acute myocardial infarction during the COVID-19 pandemic. Cardiol Res 2020; 11: 386-391
30. Kobo O, Efraim R, Saada M et al.: The impact of lockdown enforcement during the SARSCoV-2 pandemic on the timing of presentation and early outcomes of patients with ST-elevation myocardial infarction. PLoS One 2020; 15: e0241149
31. Primessnig U, Pieske BM, Sherif M: Increased mortality and worse cardiac outcome of acute myocardial infarction during the early COVID-19 pandemic. ESC Heart Fail 2021; 8: 333-343
32. Wu Y, Chen F, Wang Z et al.: Reductions in hospital admissions and delays in acute stroke care during the pandemic of COVID-19. Front Neurol 2020; 11: 584734
33. Kamrath C, Monkemoller K, Biester T et al.: Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID-19 pandemic in Germany. JAMA 2020; 324: 801-804
34. Alonso GT, Murphy C, Pyle L et al.: Increased prevalence of diabetic ketoacidosis among Colorado children at diagnosis of type 1 diabetes during the COVID-19 pandemic lockdown resolves after reopening. Diabetes Technol Ther 2021; 23: 663-664
35. Beliard K, Ebekozien O, Demeterco-Berggren C et al.: Increased DKA at presentation among newly diagnosed type 1 diabetes patients with or without COVID-19: data from a multi-site surveillance registry. J Diabetes 2021; 13: 270-272
36. Bogale KT, Urban V, Schaefer E, Bangalore Krishna K: The impact of COVID-19 pandemic on prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes: a single-centre study in Central Pennsylvania. Endocrinol Diabetes Metab 2021; 4: e00235
37. Dilek SO, Gurbuz F, Turan I et al.: Changes in the presentation of newly diagnosed type 1 diabetes in children during the COVID-19 pandemic in a tertiary center in Southern Turkey. J Pediatr Endocrinol Metab 2021; 34: 1303-1309
38. Dzygalo K, Nowaczyk J, Szwilling A, Kowalska A: Increased frequency of severe diabetic ketoacidosis at type 1 diabetes onset among children during COVID-19 pandemic lockdown: an observational cohort study. Pediatr Endocrinol Diabetes Metab 2020; 26: 167-175
39. Goldman S, Pinhas-Hamiel O, Weinberg A et al.: Alarming increase in ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the first wave of the COVID-19 pandemic in Israel. Pediatr Diabetes 2022; 23: 10-18
40. Ho J, Rosolowsky E, Pacaud D et al. Diabetic ketoacidosis at type 1 diabetes diagnosis in children during the COVID-19 pandemic. Pediatr Diabetes 2021; 22: 552-557
41. Jacob R, Weiser G, Krupik D et al.: Diabetic ketoacidosis at emergency department presentation during the first months of the SARS-CoV-2 pandemic in Israel: a multicenter cross-sectional study. Diabetes Ther 2021; 12: 1569-1574
42. Kostopoulou E, Eliopoulou MI, Rojas Gil AP, Chrysis D: Impact of COVID-19 on new-onset type 1 diabetes mellitus – a one-year prospective study. Eur Rev Med Pharmacol Sci 2021; 25: 5928-5935
43. Lawrence C, Seckold R, Smart C et al.: Increased paediatric presentations of severe diabetic ketoacidosis in an Australian tertiary centre during the COVID-19 pandemic. Diabet Med 2021; 38: e14417
44. Lee MS, Lee R, Ko CW, Moon JE: Increase in blood glucose level and incidence of diabetic ketoacidosis in children with type 1 diabetes mellitus in the Daegu-Gyeongbuk area during the coronavirus disease 2019 (COVID-19) pandemic: a retrospective cross-sectional study. J Yeungnam Med Sci 2022; 39: 46-52
45. Nagl K, Waldhor T, Hofer SE et al.: Alarming increase of ketoacidosis prevalence at type 1 diabetes-onset in Austria – results from a nationwide registry. Front Pediatr 2022; 10: 820156
46. Ng SM, Woodger K, Regan F et al.: Presentation of newly diagnosed type 1 diabetes in children and young people during COVID-19: a national UK survey. BMJ Paediatr Open 2020; 4: e000884
47. Kamrath C, Rosenbauer J, Eckert AJ et al.: Incidence of COVID-19 and risk of diabetic ketoacidosis in new-onset type 1 diabetes. Pediatrics 2021; 148: e2021050856
48. Alfayez OM, Aldmasi KS, Alruwais NH et al.: Incidence of diabetic ketoacidosis among pediatrics with type 1 diabetes prior to and during COVID-19 pandemic: a meta-analysis of observational studies. Front Endocrinol (Lausanne) 2022; 13: 856958
49. Accili D: Can COVID-19 cause diabetes? Nat Metab 2021; 3: 123-125
50. DiMeglio L:. COVID-19 and type 1 diabetes: addressing concerns and maintaining control. Diabetes Care 2021; 44: 1924-1928
51. Denina M, Trada M, Tinti D et al.: Increase in newly diagnosed type 1 diabetes and serological evidence of recent SARS-CoV-2 infection: Is there a connection? Front Med (Lausanne) 2022; 9: 927099. doi: 10.3389/fmed.2022.927099
52. Cherubini V, Marino M, Carle F et al.: Effectiveness of ketoacidosis prevention campaigns at diagnosis of type 1 diabetes in children: a systematic review and meta-analysis. Diabetes Res Clin Pract 2021; 175: 108838
→Gewichtsentwicklung bei Kindern, Jugendlichen und Erwachsenen in der COVID-19-Pandemie (Seite 61 – 66)
1. Williamson EJ, Walker AJ, Bhaskaran K et al.: Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020; 584: 430-436. doi:10.1038/s41586-020-2521-4
2. Singer M, Clair S: Syndemics and public health: reconceptualizing disease in bio-social context. Medical anthropology quarterly 2003; 17: 423-441
3. DAG, EKFZ, AGA: Folgen der Pandemie: Wie Corona das Gesundheitsverhalten von Kindern und Jugendlichen verändert hat. Pressekonferenz zur Vorstellung einer repräsentativen forsa-Umfrage unter Eltern minderjähriger Kinder. 31. Mai 2022. https://adipositas-gesellschaft.de/wp-content/uploads/2022/05/2022-05-31_DAG-EKFZ_forsa-Umfrage_Ergebnispraesentation_final.pdf (letzter Zugriff: 22.10.2022)
4. Vogel M, Geserick M, Gausche R et al.: Gewichtszunahme bei Kindern und Jugendlichen während der Covid-19 Pandemie. Adipositas – Ursachen, Folgeerkrankungen, Therapie 2021; 15: 206-211
5. Vogel M, Geserick M, Gausche R et al.: Age- and weight group-specific weight gain patterns in children and adolescents during the 15 years before and during the COVID-19 pandemic. Int J Obes (Lond) 2022; 46: 144-152. doi:10.1038/s41366-021-00968-2
6. Galler A, Röbl M, Prinz N et al.: Weight development in children and adolescents with obesity during the COVID-19 pandemic. Dtsch Arztebl International 2022; 119: 302-303
7. Rücker P, Brauchmann J, Walch S et al.: Bewegungs- und Ernährungsverhalten von Kindern und Jugendlichen mit Adipositas und ihren Familien während der COVID-19-Pandemie: Eine Beobachtungsstudie im sozialpädiatrischen Kontext. Adipositas – Ursachen, Folgeerkrankungen, Therapie 2021; 15: 201-205
8. Schmidt SCE, Burchartz A, Kolb S et al.: Zur Situation der körperlich-sportlichen Aktivität von Kindern und Jugendlichen während der COVID-19 Pandemie in Deutschland: Die Motorik-Modul Studie (MoMo). https://publikationen.bibliothek.kit.edu/1000133697 (letzter Zugriff: 20.06.2022). doi:10.5445/IR/1000133697/v2
9. EKFZ: Lebensstil und Ernährung von Erwachsenen in Corona-Zeiten. Pressekonferenz | Expertengespräch am 02.06.21 zur Forsa-Studie. https://www.ekfz.tum.de/fileadmin/PDF/PPT__EKFZ_und_Forsa_2_Final.pdf (letzter Zugriff: 22.10.2022)
10. Schaller K, Effertz T, Gerlach S et al.: Prävention nichtübertragbarer Krankheiten – eine gesamtgesellschaftliche Aufgabe. Grundsatzpapier der Deutschen Allianz Nichtübertragbare Krankheiten (DANK). https://www.dank-allianz.de/files/content/dokumente/DANK-Grundsatzpapier_ES.pdf (letzter Zugriff: 22.10.2022)
11. von Philipsborn P, Geffert K, Klinger C et al.: Nutrition policies in Germany: a systematic assessment with the Food Environment Policy Index. Public Health Nutr 2022; 25: 1691-1700. doi:10.1017/S1368980021004742: 1-10
→Telemedizin – eine neue Option in der Diabetologie (Seite 67 – 72)
1. AG-Telemedizin der Bundesärztekammer: Telemedizinische Methoden in der Patientenversorgung – Begriffliche Verortung. https://www.bundesaerztekammer.de/fileadmin/user_upload/_old-files/downloads/pdf-Ordner/Telemedizin_Telematik/Telemedizin/Telemedizinische_Methoden_in_der_Patientenversorgung_Begriffliche_Verortung.pdf (letzter Zugriff: 01.07.2022)
2. von Sengbusch S, Eisemann N, Mueller-Godeffroy E et al.: Outcomes of monthly video consultations as an add-on to regular care for children with type 1 diabetes: a 6-month quasi-randomized clinical trial followed by an extension phase. Pediatr Diabetes 2020; 21: 1502-1515
3. Bakhach M, Reid MW, Pyatak EA et al.: Home telemedicine (CoYoT1 Clinic): a novel approach to improve psychosocial outcomes in young adults with diabetes. Diabetes Educ 2019; 45: 420-430
4. Crossen SS, Marcin JP, Qi L et al.: Home visits for children and adolescents with uncontrolled type 1 diabetes. Diabetes Technol Ther 2020; 22: 34-41
5. Reid MW, Krishnan S, Berget C et al.: CoYoT1 Clinic: Home telemedicine increases young adult engagement in diabetes care. Diabetes Technol Ther 2018; 20: 370-379
6. Crowley MJ, Tarkington PE, Bosworth HB et al.: Effect of a comprehensive telehealth intervention vs telemonitoring and care coordination in patients with persistently poor type 2 diabetes control: a randomized clinical trial. JAMA Intern Med 2022; 182: 943-952
7. Neu A, Bürger-Büsing J, Danne T et al.: Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter. DDG-Praxisempfehlung. Diabetologie 2020. 15 (S 01): S51-S64
8. Kirzhner A, Zornitzki T, Ostrovsky V et al.: Is telemedicine the preferred visit modality in patients with type 1 diabetes? Exp Clin Endocrinol Diabetes 2022; 130: 462-467
9. von Sengbusch S, Doerdelmann J, Lemke S et al.: Parental expectations before and after 12-month experience with video consultations combined with regular outpatient care for children with type 1 diabetes: a qualitative study. Diabet Med 2021; 38: e14410
10. Frielitz FS, Dördelmann J, Lemke S et al.: Assessing the benefits and challenges of video consultations for the treatment of children with type 1 diabetes – a qualitative study among diabetes professionals. Exp Clin Endocrinol Diabetes 2021; 129: 831-836
11. Crossen S, Raymond J, Neinstein A: Top 10 tips for successfully implementing a diabetes telehealth program. Diabetes Technol Ther 2020; 22: 920-928
12. Phillip M, Bergenstal RM, Close KL et al.: The digital/virtual diabetes clinic: the future is now – recommendations from an international panel on diabetes digital technologies introduction. Diabetes Technol Ther 2021; 23: 146-154
13. Sarteau AC, Souris KJ, Wang J et al.: Changes to care delivery at nine international pediatric diabetes clinics in response to the COVID-19 global pandemic. Pediatr Diabetes, 2021; 22: 463-468
14. Lee JM, Carlson E, Albanese-O‘Neill A et al.: Adoption of telemedicine for type 1 diabetes care during the COVID-19 pandemic. Diabetes Technol Ther 2021; 23: 642-651
15. March CA, Flint A, DeArment D et al.: Paediatric diabetes care during the COVID-19 pandemic: lessons learned in scaling up telemedicine services. Endocrinol Diabetes Metab 2021; 4: e00202
16. Universitätsklinikum Schleswig-Holstein, AOK NordWest: Gemeinsame Medien-Information: Bundesweit einmaliges Modellprojekt ViDiKi erfolgreich abgeschlossen: Videosprechstunden für Kinder und Jugendliche mit Typ-1-Diabetes werden in Schleswig-Holstein für AOK-Versicherte fortgesetzt. https://www.aok.de/pk/cl/nordwest/inhalt/videosprechstunden-fuer-kinder-und-jugendliche-mit-typ-1-diabetes-werden-in-schleswig-holstein-fuer-aok-versicherte-fortgesetzt/ (letzter Zugriff: 01.07.2022)
→Schulung und Versorgung von Menschen mit Diabetes unter Pandemiebedingungen (Seite 73 – 78)
1. Bundesministerium für Gesundheit: Bekanntmachung eines Beschlusses des Gemeinsamen Bundesausschusses über die 19. Änderung derDMP-Anforderungen-Richtlinie (DMP-A-RL): Ausnahmeregelungen für Schulungen und Dokumentationen aufgrund der COVID-19-Pandemie. Vom 27. März 2020. https://www.bundesanzeiger.de/pub/de/amtliche-veroeffentlichung?3 (letzter Zugriff: 22.10.2022)
2. Reischmann M: Deutsche Diabetes Gesellschaft: Videoschulungen – überall und dauerhaft. diabetes zeitung 2021. https://www.ddg.info/diabetes-zeitung/ddg-01-02/2021/videoschulungen-ueberall-und-dauerhaft (letzter Zugriff: 10.09.2022)
3. Kulzer B, Heinemann L (Hrsg.): Digitalisierungs- und Technologiereport Diabetes 2022. Kirchheim, Mainz, 2021
4. Kassenärztliche Bundesvereinigung: KBV-zertifizierte Videodienstanbieter (2022). https://www.kbv.de/media/sp/liste_zertifizierte-Videodienstanbieter.pdf (letzter Zugriff: 22.10.20229
5. Albrecht C, Ehrmann D, Hermanns N, Kulzer B. Vorhang auf für die Diabetes-Schulungs-Lounge. Vorstellung auf dem Diabetes Kongress 2022, Berlin
6. Boehm K, Deml A: Zukunft der Diabetesberatung und Diabetesschulung. In: Kulzer B, Heinemann L (Hrsg.): Digitalisierungs- und Technologiereport Diabetes 2021. Kirchheim, Mainz, 2020
7. Dreier R, Scheuffele I: Handlungsfähig in der Transformation – Digitale Resilienz. managerSeminare 2022; 290: 45-51
→Diabetes und Impfungen bei Erwachsenen und Kindern/Jugendlichen (Seite 79 – 83)
1. Robert Koch-Institut: Empfehlungen der ständigen Impfkomission am Robert-Koch-Institut 2022. Epidemiologische Bulletin 4/2022
2. Robert Koch-Institut: Impfung bei Kindern und Jugendlichen. https://www.rki.de/SharedDocs/FAQ/COVID-Impfen/FAQ_Liste_Impfung_Kinder_Jugendliche.html
3. ISPAD: Current ISPAD recommendations on COVID Vaccinations in children and adolescents with diabetes. https://cdn.ymaws.com/www.ispad.org/resource/resmgr/covid19/newfolder/Final_ISPAD_Statement_COVID_.pdf (letzter Zugriff: 22.10.2022)
4. Esposito S, Mariotti Zani E, Torelli L et al.: Childhood vaccinations and type 1 diabetes. Front Immunol 2021; 12: 667889. doi: 10.3389/fimmu.2021.667889
5. Morgan E, Halliday SR, Campbell GR et al.: Vaccinations and childhood type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 2016; 59: 237-243
6. Glanz JM, Clarke CL, Daley MF et al.: The childhood vaccination schedule and the lack of association with type 1 diabetes. Pediatrics 2021; 148: e2021051910
7. Glanz JM, Clarke CL, Xu S et al.: Association between rotavirus vaccination and type 1 diabetes in children. JAMA Pediatr 2020; 174: 455-462
8. DiMeglio LA, Evans-Molina C, Oram RA: Type 1 diabetes. Lancet 2018; 391: 2449-2462
9. Stefan N, Sippel K, Heni M et al.: Obesity and impaired metabolic health increase risk of COVID-19-related mortality in young and middle-aged adults to the level observed in older people: the LEOSS registry. Front Med (Lausanne) 2022; 9: 875430
→Diabetes und Augenerkrankungen (Seite 84 – 92)
1. Green JB, Bethel MA, Armstrong PW et al.: Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373: 232-242
2. Hammes HP, Welp R, Kempe HP et al.: Risk factors for retinopathy and DME in type 2 diabetes – results from the German/Austrian DPV database. PloS One 2015; 10: e0132492
3. Leasher JL, Bourne RR, Flaxman SR et al.: Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 2016; 39: 1643-1649
4. Marso SP, Bain SC, Consoli A et al.: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375: 1834-1844
5. Ponto KA, Koenig J, Peto T et al.: Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 2016; 59: 1913-1919
6. Schorr SG, Hammes HP, Muller UA et al.: The prevention and treatment of retinal complications in diabetes. Dtsch Arztebl Int 2016; 113: 816-823
7. Goh JK, Cheung CY, Sim SS et al.: Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol 2016; 10: 282–294
8. Gulshan V, Peng L, Coram M et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 316: 2402–2410
9. Heydon P, Egan C, Bolter L et al.: Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol 2021; 105: 723-728. Epub 2020 Jun 30. doi: 10.1136/bjophthalmol-2020-316594
10. Baker CW, Glassman AR, Beaulieu WT et al.: Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA 2019; 321: 1880-1894
11. Deutsche Ophthalmologische Gesellschaft (DOG), Retinologische Gesellschaft (RG), Berufsverband der Augenärzte Deutschlands (BVA): Stellungnahme der DOG, der RG und des BVA zur Therapie des diabetischen Makulaödems, Stand August 2019. Klin Monatsbl Augenheilkd 2020; 237: 325–352
12. Gross JG, Glassman AR, Liu D et al.: Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol 2018; 136: 1138-1148
13. Lang GE, Stahl A, Voegeler J et al.: Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy – the PRIDE study. Acta Ophthalmol 2020: 98: e530–e539. Epub: 2019 Dec 6. doi: 10.1111/aos.14312
14. Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft, Berufsverband der Augenärzte Deutschlands: Ergänzende Stellungnahme der DOG, der RG und des BVA zur Therapie der proliferativen diabetischen Retinopathie. Ophthalmologe 2020; 117: 755-759
15. Lemmen KD, Agostini H, Bertram B et al.: Stadieneinteilung und Therapie der diabetischen Retinopathie und Makulopathie – eine Übersicht. Teil 1. Z Prakt Augenheilkd 2021; 42: 389–398
16. Lemmen KD, Agostini H, Bertram B et al.: Stadieneinteilung und Therapie der diabetischen Retinopathie und Makulopathie – eine Übersicht. Teil 2. Z Prakt Augenheilkd 2021; 42: 457-467
→Diabetes und Niere: ein Update (Seite 93 – 99)
1. Menon R, Otto EA, Sealfon R et al.: SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease. Kidney Int 2020; 98: 1502-1518
2. Maric-Bilkan C: Sex differences in diabetic kidney disease. Mayo Clin Proc 2020; 95: 587-599
3. Tomita I, Kume S, Sugahara S et al.: SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab 2020; 32: 404-419.e6
4. Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D et al.: Epigenetic modifiers as potential therapeutic targets in diabetic kidney disease. Int J Mol Sci 2020; 21: 4113
5. Gluck C, Qiu C, Han SY et al.: Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease. Nat Commun 2019; 10: 2461
6. Park J, Guan Y, Sheng X et al.: Functional methylome analysis of human diabetic kidney disease. JCI Insight 2019; 4: e128886
7. Sheng X, Qiu C, Liu H et al.: Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease. Proc Natl Acad Sci U S A 2020; 117: 29013-29024
8. Kalantar-Zadeh K, Schwartz GG, Nicholls SJ et al.: Effect of apabetalone on cardiovascular events in diabetes, CKD, and recent acute coronary syndrome: Results from the BETonMACE randomized controlled trial. Clini J Am Soc Nephrol 2021; 16: 705-716
9. Wasiak S, Dzobo KE, Rakai BD et al.: BET protein inhibitor apabetalone (RVX-208) suppresses pro-inflammatory hyper-activation of monocytes from patients with cardiovascular disease and type 2 diabetes. Clin Epigenetics 2020; 12: 166
10. Sis B, Tasanarong A, Khoshjou F et al.: Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int 2007 71: 218-226
11. Verzola D, Gandolfo MT, Gaetani G et al.: Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295: F1563-1573
12. Vallon V, Thomson SC: The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16: 317-336
13. Baar MP, Brandt RM, Putavet DA et al.: Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017; 169: 132-147.e116
14. Baker DJ, Childs BG, Durik M et al.: Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016; 530: 184-189
15. Brennan E, Kantharidis P, Cooper ME, Godson C: Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat Rev Nephrol 2021; 17: 725-739
16. Budamagunta V, Foster TC, Zhou D: Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13: 19920-19941
17. Al-Dabet MM, Shahzad K, Elwakiel A et al.: Reversal of the renal hyperglycemic memory by targeting sustained tubular p21 expression. Nat Comm 2022; 13: 5062
18. Barrera-Chimal J, Lima-Posada I, Bakris GL, Jaisser F: Mineralocorticoid receptor antagonists in diabetic kidney disease – mechanistic and therapeutic effects. Nat Rev Nephrol 2022; 18: 56-70
19. Bakris GL, Agarwal R, Anker SD et al.: Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 2020; 383: 2219-2229
20. Pitt B, Filippatos G, Agarwal R et al.: Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 2021; 385: 2252-2263
21. Agarwal R, Filippatos G, Pitt B et al.: Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 2022; 43: 474-484
→Diabetisches Fußsyndrom – Bedeutung einer interprofessionellen transsektoralen Behandlung (Seite 108 – 116)
1. Armstrong DG, Swerdlow MA, Armstrong AA et al.: Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res 2020; 13: 16. doi: 10.1186/s13047-020-00383-2
2. Khan T, Armstrong DG: Ulcer-free, hospital-free and activity-rich days: three key metrics for the diabetic foot in remission. J Wound Care 2018; 27 (Suppl 4): S3-S4. doi: 10.12968/jowc.2018.27.Sup4.S3
3. Armstrong DG, Mills JL: Toward a change in syntax in diabetic foot care: prevention equals remission. J Am Podiatr Med Assoc 2013; 103: 161–162
4. Ogurtsova K, Morbach S, Haastert B et al.: Cumulative long-term recurrence of diabetic foot ulcers in two cohorts from centres in Germany and the Czech Republic. Diabetes Res Clin Pract 2021; 172: 108621. doi: 10.1016/j.diabres.2020.108621. Epub 2020 Dec 13
5. Matos M, Mendes R, Silva AB, Sousa N: Physical activity and exercise on diabetic foot related outcomes: a systematic review. Diabetes Res Clin Pract 2018; 139: 81-90. doi: 10.1016/j.diabres.2018.02.020. Epub 2018 Feb 23
6. Tran MM, Haley MN: Does exercise improve healing of diabetic foot ulcers? A systematic review. J Foot Ankle Res 2021; 14: 19. doi: 10.1186/s13047-021-00456-w
7. Baubeta FE, Andersson M, Thuresson M et al.: Editor’s choice-impact of comorbidity, medication, and gender on amputation rate following revascularization for chronic limb threatening ischemia. Eur J Vasc Endovasc Surg 2018; 56: 681-688
8. Keller K, Schmitt VH, Vosseler M et al.: Diabetes mellitus and its impact on patient-profile and in-hospital outcomes in peripheral artery disease. J Clin Med 2021; 10: 5033. doi: 10.3390/jcm10215033
9. Goldman MP, Corriere MA, Craven T et al.: Evaluation of neuropathy, glycemic control, and revascularization as risk factors for future lower extremity amputation among diabetic patients. Ann Vasc Surg 2021; 73: 254-263
10. Dakhel A, Zarrouk M, Ekelund J et al.: Worse cardiovascular prognosis after endovascular surgery for intermittent claudication caused by infrainguinal atherosclerotic disease in patients with diabetes. Ther Adv Endocrinol Metab 2020; 11: 2042018820960294. Doi: 10.1177/2042018820960294.eCollection 2020
11. Almasri J, Adusumalli J, Asi N et al.: A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg 2019; 58 (Suppl 1): 110-119
12. Khan T, Armstrong DG: Ulcer-free, hospital-free and activity-rich days: three key metrics for the diabetic foot in remission. J Wound Care 2018; 27 (Suppl 4): S3-S4. doi: 10.12968/jowc.2018.27.Sup4.S3
13. Schaper NC, van Netten JJ, Apelqvist J et al.; IWGDF Editorial Board: Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes Metab Res Rev 2020; 36 (Suppl 1): e3266. doi: 10.1002/dmrr.3266. PMID: 32176447
14. Musuuza J, Sutherland BL, Kurter S et al.: A systematic review of multidisciplinary teams to reduce major amputations for patients with diabetic foot ulcers. J Vasc Surg 2020; 71: 1433-1446.e3. doi: 10.1016/j.jvs.2019.08.244. Epub 2019 Oct 30
15. Deutsche Diabetes Gesellschaft: Zertifizierte Praxen / Kliniken. Übersicht aller von der DDG zertifizierten Kliniken und Arztpraxen. https://www.ddg.info/behandlung/zertifizierte-einrichtungen#filter=stufe&value=3 (letzter Zugriff: 22.10.2022)
16. Arbeitsgemeinschaft Diabetischer Fuß der Deutschen Diabetes Gesellschaft: Übergangsregelung zur aktiven und passiven Hospitation zur Zertifizierung als Fußbehandlungseinrichtung. https://ag-fuss-ddg.de/die-ddg/arbeitsgemeinschaften/diabetischer-fuss/zertifizierung (letzter Zugriff: 22.10.2022)
17. Gemeinsamer Bundesausschuss: Beschluss: Richtlinie zum Zweitmeinungsverfahren: Aufnahme des Eingriffs Amputationen beim Diabetischen Fußsyndrom sowie weitere Änderung der Richtlinie. Beschlussdatum: 16.04.2020. Inkrafttreten: 27.05.2021. https://www.g-ba.de/beschluesse/4266/ (letzter Zugriff: 22.10.2022)
18. Stiftung für Qualität und Wirtschaftlichkeit im Gesundheitswesen: Entscheidungshilfe diabetisches Fußsyndrom: Lässt sich eine Amputation vermeiden? https://www.gesundheitsinformation.de/entscheidungshilfe-diabetisches-fusssyndrom-laesst-sich-eine-amputation-vermeiden.html (letzter Zugriff: 22.10.2022)
19. Eckhard M: Das diabetische Fußsyndrom – mehr als nur eine Wunde am Fuß. Info Diabetologie 2019; 13: 26-37. doi: 10.1007/s15034-019-1609-0
→Diabetes mellitus – Herzerkrankungen – Schlaganfall (Seite 117 – 126)
1. Jacobs E, Hoyer A, Brinks R et al.: Burden of mortality attributable to diagnosed diabetes: a nationwide analysis based on claims data from 65 million people in Germany. Diabetes Care 2017; 40: 1703
2. Rawshani A,Rawshani A, Franzén S et al.: Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018; 392 (10146): 477-486
3. Rawshani A, Rawshani A, Franzén S et al.: Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2018; 379: 633-644
4. Tschoepe D, Towae F, Papp A et al.: High 3-year-mortality rates in females with newly diagnosed diabetes after acute STEMI and NSTEMI: results of the SWEETHEART registry. Diabetologia 2012; 55: 30–31
5. Neumann FJ, Sousa-Uva M, Ahlsson A et al.; ESC Scientific Document Group: 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019; 40: 87-165
6. Kristensen SL, Preiss D, Jhund PS et al.; PARADIGM-HF Investigators and Committees: Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail 2016; 9: e002560
7. Halle M, Gitt AK, Hanefeld M et al.: Diabetes und Herzinsuffizienz: eine praxisorientierte, kritische Bestandsaufnahme. Dtsch Med Wochenschr 2012; 137: 437–441
8. McMurray JJV, Solomon SD, Inzucci SE et al. for the DAPA-HF Trial Committees and Investigators: Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995-2008. doi: 10.1056/NEJMoa1911303
9. Packer M, Anker SD, Butler I et al. for the EMPEROR-Reduced Trial Invertigators: Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383: 1413-1424. doi: 10.1056/NEJMoa2022190
10. Zannad F, Ferreira JP, Pocock SJ et al.: SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a metaanalysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020; 396: 819-829. doi: 10.1016/S0140-6736(20)31824-9
11. Junttila MJ, Barthel P, Myerburg RJ et al.: Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm 2010; 7: 1396–1403
12. Lynge TH, Svane J, Pedersen-Bjergaard U et al.: Sudden cardiac death among persons with diabetes aged 1-49 years: a 10-year nationwide study of 14 294 deaths in Denmark. Eur Heart J 2020; 41: 2699-2706. doi: 10.1093/eurheartj/ehz891
13. Cubbon RM, Wheatcroft SB, Grant PJ et al.; Evaluation of Methods and Management of Acute Coronary Events Investigators: Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J 2007; 28: 540–550
14. Zinman B, Wanner C, Lachin JM et al.; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117–2128
15. Marso SP, Daniels GH, Brown-Frandsen K et al. for LEADER Steering Comittee on behalf of the LEADER Trial Investigators: Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-322
16. Kosiborod M, Cavender M, Norhammar A: Lower rates of hospitalization for heart failure and all-cause death in new users of SGLT2 inhibitors: the CVD-REAL study. 66th Scientific Session of the American College of Cardiology, Washington, DC. March 17–19, 2017. Abstract 415-1
17. Kirchhof P, Benussi S, Kotecha D et al.: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016; 18: 1609–1678
18. Doherty JU, Gluckman TJ, Hucker WJ et al.: 2017 ACC Expert Consensus Decision Pathway for periprocedural management of anticoagulatoon in patients with nonvalvular atrila Fibrillation: a report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol 2017; 69: 871-898
19. Steffel H, Heidbuchel H: ‘Ten Commandments’ of the EHRA Guide for the Use of NOACs in AF. Eur Heart J 2018; 39: 1322
20. Peters SA, Huxley RR, Woodward M: Diabetes as a risk factor for stroke in women compares with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014; 383: 1973-1980
21. O‘Donnell MJ, Chin SL, Rangarajan S et al.; INTERSTROKE investigators: Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016; 388 (10046): 761-775
22. Jeerakathil T, Johnson JA, Simpson SH et al.: Short-term risk for stroke in doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: a population-based cohort study. Stroke 2007; 38: 1739-1743
23. Bushnell CD, Olson DM, Zhao X et al.; AVAIL Investigators: Secondary preventive medication persistence and adherence 1 year after stroke. Neurology 2011; 77: 1182-1190
24. Selvin E, Wattanakit K, Steffes MW et al. HbA1c and peripheral arterial disease in diabetes. The Atherosclerosis Risk in Communities study. Diabetes Care 2006; 29: 877-882
25. Low Wang CC, Blomster JI, Heizer G et al.: Cardiovascular and limb outcomes in patients with diabetes and peripheral artery disease. The EUCLID Trial. J Am Coll Cardiol 2018; 72: 3274-3284
26. Cosentino F, Grant PJ, Aboyans V et al.: 2019; ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41: 255-323
27. Forst T, Jacob S: ESC/ EASD-Guidelines 2019 – Was muss man wissen? Kompendium Diabetes 2020: 14-18
28. Arnott C, Li Q, Kang A et al.: Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc 2020; 9: e014908
29. Perkovic V, Jardine MJ, Neal B et al.: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380: 2295-2306
30. Liu J, Li L, Deng K et al.: Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ 2017; 357: j2499. doi: 10.1136/bmj.j2499
31. McMurray JJV, Solomon SD, Inzucchi SE et al.: Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995-2008
32. Neal B, Perkovic V, Mahaffey KW et al.: Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644-657
33. Verma S, Mazer DC, Al-Omran M et al.: Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: a subanalysis of EMPA-REG OUTCOME. Circulation 2018; 137: 405-407
34. Dhatariya K, Bain SC, Buse JB et al.: The impact of liraglutide on diabetes-related foot ulceration and associated complications in patients with type 2 diabetes at high risk for cardiovascular events: results From the LEADER trial. Diabetes Care 2018; 41: 2229-2235
35. Solomon SD, de Boer RA, DeMets D et al.: Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. Eur J Heart Fail 2021; 23: 1217-1225. doi: 10.1002/ejhf.2249. Epub 2021 Jun 9
36. Guckel D, Isgandarova K, Bergau L et al.: The effect of diabetes mellitus on the recurrence of atrial fibrillation after ablation. J Clin Med 2021; 10: 4863. doi: 10.3390/jcm10214863
37. Tomic D, Shaw JE, Magliano DJ: The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 2022; 18: 525-539. doi: 10.1038/s41574-022-00690-7
38. Kremers SHM, Wild SH, Elders PJM et al.: The role of mental disorders in precision medicine for diabetes: a narrative review. Diabetologia 2022; 65: 1895-1906. Epub 2022 Jun 22. doi: 10.1007/s00125-022-05738-x
39. Biessels GJ, Despa F: Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications Nat Rev Endocrinol 2018; 14: 591-604. doi: 10.1038/s41574-018-0048-7
40. Antal B, McMahon LP, Sultan SF et al.: Type 2 diabetes mellitus accelerates brain aging and cognitive decline: complementary findings from UK Biobank and meta-analyses. Elife 2022; 11: e73138. doi: 10.7554/eLife.73138
→Diabetes und Erkrankungen des Zahnbetts (Seite 127 – 133)
1. Schwendicke F, Krois J, Kocher T et al.: More teeth in more elderly: periodontal treatment needs in Germany 1997–2030. J Clin Periodontol 2018; 45: 1400-1407. doi: 10.1111/jcpe.13020
2. Jordan AR, Micheelis W (Hrsg): Fünfte Deutsche Mundgesundheitsstudie (DMS V). Deutscher Ärzteverlag, Köln, 2016
3. Tönnies T, Rathmann W: Epidemiologie des Diabetes in Deutschland. In: Deutsche Diabetes Gesellschaft, diabetesDE – Deutsche Diabetes-Hilfe (Hrsg.): Deutscher Gesundheitsbericht Diabetes 2022. Kirchheim, Mainz, 2021: 9-15
4. Seitz MW, Listl S, Bartols A et al.: Current knowledge on correlations between highly prevalent dental conditions and chronic diseases: an umbrella review. Prev Chronic Dis 2019; 16: 180641. doi: 10.5888/pcd16.180641
5. Deschner J: Interaktionen zwischen Parodontitis und Systemerkrankungen. Der Freie Zahnarzt 2018; 01: 68-76. doi: 10.1007/s12614-017-6774-8
6. Deschner J, Haak T, Jepsen S et al.: Diabetes mellitus und Parodontitis. Wechselbeziehung und klinische Implikationen. Ein Konsensuspapier. Internist 2011; 52: 466-477
7. Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J: Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol 2017; 44: 456-462. doi: 10.1111/jcpe.12732
8. Tonetti MS, Chapple IL, Jepsen S, Sanz M: Primary and secondary prevention of periodontal and peri-implant diseases: introduction to, and objectives of the 11th European Workshop on Periodontology consensus conference. J Clin Periodontol 2015; 42 (Suppl 16): 1-4
9. Bundeszahnärztekammer: Parodontitis-Symptome: Fast jeder zweite Deutsche unterschätzt Mundgeruch. Pressemitteilung, 22.03.2022. https://www.bzaek.de/fileadmin/PDFs/pm22/220322_PM_paroK.pdf (letzter Zugriff: 22.10.2022)
10. Strauss SM, Russell S, Wheeler A et al.: The dental office visit as a potential opportunity for diabetes screening: an analysis using NHANES 2003–2004 data. J Public Health Dent 2010; 70: 156–162
11. Oesterreich D, Ziller S: Diabetiker in der zahnärztlichen Praxis. Diabetologe 2011; 7: 381–386. doi: 10.1007/s11428-010-0655-y
12. Gemeinsamer Bundesausschuss (Hrsg.): Beschluss zur Richtlinie zur systematischen Behandlung von Parodontitis und anderer Parodontalerkrankungen (PAR-Richtlinie). Erstfassung, 17. Dezember 2020. https://www.g-ba.de/beschluesse/4623/ (letzter Zugriff: 23.04.2022)
13. Deutsche Diabetes Stiftung: FINDRISK. https://www.diabetesstiftung.de/findrisk (letzter Zugriff: 22.10.2022)
14. Siegel EG, Kocher T: Volkskrankheiten Diabetes und Parodontitis: rechtzeitige Diagnose! In: Deutsche Diabetes Gesellschaft, diabetesDE – Deutsche Diabetes-Hilfe (Hrsg.): Deutscher Gesundheitsbericht Diabetes 2018. Kirchheim, Mainz, 2017: 275-281
15. Prchala G: Exekutivrat beschließt orale Strategie – Die Mundgesundheit ist jetzt fest bei der WHO verankert. Zm 2022; 4: 34-35
16. Heilmann A, Ziller S: Reduzierung des Zuckerkonsums für eine bessere Mundgesundheit – Welche Strategien sind Erfolg versprechend? Bundesgesundheitsbl 2021; 64: 838–846. doi: 10.1007/s00103-021-03349-2
→Diabetes und Krebs (Seite 134 – 139)
1. Wengler A, Rommel A, Plaß D et al. on behalf of the BURDEN 2020 Study Group: Years of life lost to death – a comprehensive analysis of mortality in Germany conducted as part of the BURDEN 2020 project. Dtsch Arztebl Int 2021; 118: 137–44. doi: 10.3238/arztebl.m2021.0148
2. Dagenais GR, Leong DP, Rangarajan S et al.: Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet 2020; 395: 785–794
3. Tsunekawa S, Kamiya H, Nakamura J: Different trends in causes of death in patients with diabetes between Japan and the USA. J Diabetes Investig 2019; 10: 571-573. doi: 10.1111/jdi.12962. Epub 2018 Dec 7
4. Collier A, Meney C, Hair M et al.: Cancer has overtaken cardiovascular disease as the commonest cause of death in Scottish type 2 diabetes patients: a population-based study (The Ayrshire Diabetes Follow-up Cohort study). J Diabetes Investig 2020; 11: 55-61. doi: 10.1111/jdi.13067. Epub 2019 Jul 25
5. Pearson-Stuttard J, Bennett J, Cheng YJ et al.: Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol 2021; 9: 165-173. doi: 10.1016/S2213-8587(20)30431-9. Epub 2021 Feb 4
6. Scherübl H: Typ-2-Diabetes-mellitus und Krebsrisiko. Dtsch Med Wochenschr 2021; 146: 1218-1225. doi: 10.1055/a-1529-4521. Epub 2021 Sep 14
7. Scherübl H: Krebsrisiko bei Prädiabetes und Typ-2-Diabetes mellitus. Diabetologie 2022. doi: 10.1055/a-1837-2035
8. Rios Garcia M, Steinbauer B, Srivastava K et al.: Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab 2017; 26: 842-855
9. Scherübl H: Typ-2-Diabetes mellitus und gastrointestinale Krebsvorsorge. Z Gastroenterol 2022 Jun 13. doi: 10.1055/a-1821-9108. Epub ahead of print
10. Vuik F, Nieuwenburg S, Bardou M et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 2019; 68: 1820-1826
11. Sung H, Siegel RL, Rosenberg PS et al. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 2019; 4: e137–47
12. Sjöholm K, Carlsson LMS, Svensson PA et al.: Association of bariatric surgery with cancer incidence in patients with obesity and diabetes: long-term results from the Swedish Obese Subjects study. Diabetes Care 2022; 45: 444-450. Epub 2021 Nov 19. doi: 10.2337/dc21-1335
13. Rustgi VK, Li Y, Gupta K et al.: Bariatric surgery reduces cancer risk in adults with nonalcoholic fatty liver disease and severe obesity. Gastroenterology 2021; 161: 171-184.e10
14. Marin AM, Mattar SB, Amatuzzi RF et al.: Plasma exosome-derived microRNAs as potential diagnostic and prognostic biomarkers in Brazilian pancreatic cancer patients. Biomolecules 2022; 12: 769. doi: 10.3390/ biom12060769
15. Deng J, Guo Y, Du J et al.: The intricate crosstalk between insulin and pancreatic ductal adenocarcinoma: a review from clinical to molecular. Front Cell Dev Biol 2022; 10: 844028. doi: 10.3389/fcell.2022.844028
→Diabetes bei Kindern und Jugendlichen (Seite 140 – 146)
1. Schienkiewitz A, Brettschneider AK, Damerow S, Schaffrath Rosario A: Übergewicht und Adipositas im Kindes- und Jugendalter in Deutschland – Querschnittsergebnisse aus KiGGS Welle 2 und Trends. J Health Monit 2018; 3: 16-23. doi: 10.17886/RKI-GBE-2018-005
2. Rosenbauer J, Neu A, Rothe U et al.: Diabetestypen sind nicht auf Altersgruppen beschränkt: Typ-1-Diabetes bei Erwachsenen und Typ-2-Diabetes bei Kindern und Jugendlichen. J Health Monit 2019; 4: 31-53. doi: 10.25646/5981
3. Kamrath C, Rosenbauer J, Eckert AJ et al.: Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV registry. Diabetes Care 2022; 45: 1762-1771. Epub 2022 Jan 17. doi: 10.2337/dc21-0969
4. Achenbach P: Typ-1-Diabetes bei Kindern früh erkennen und präventiv handeln. Diabetes aktuell 2022; 20: 116-123. doi: 10.1055/a-1839-8893
5. von Sengbusch S, Dördelmann J, Lemke S et al.: Parental expectations before and after 12-month experience with video consultations combined with regular outpatient care for children with type 1 diabetes: a qualitative study. Diabet Med 2021; 38: e14410. doi: 10.1111/dme.14410
6. Ware J, Allen JM, Boughton CK et al. for the KidsAP Consortium: Randomized trial of closed-loop control in very young children with type 1 diabetes. N Eng J Med 2022; 386: 209-219
7. Dehn-Hindenberg A, Saßmann H, Berndt V et al.: Long-term occupational consequences for families of children with type 1 diabetes: the mothers take the burden. Diabetes Care 2021; 44: 2656-2663. doi: 10.2337/dc21-0740
8. Bode K, Reschke F, Weiskorn J et al.: Das europäische Netzwerk INNODIA – Immuntherapie zum Erhalt der Betazellfunktion bei klinischer Manifestation. Diabetes aktuell 2022; 20: 128-134. doi: 10.1055/a-1827-0147
9. Kordonouri O, Danne T, Lange K: Neue Wege zur Prävention des Typ-1-Diabetes bei Kindern – Chancen und Risiken. Monatschr Kinderkeild 2021; 169. doi: 10.1007/s00112-021-01274-x
→Diabetes als besondere Herausforderung der Geriatrie in Deutschland (Seite 153 – 157)
1. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF): Nationale VersorgungsLeitlinie Typ-2-Diabetes – Teilpublikation der Langfassung, 2. Auflage. Version 1. 2021. doi: 10.6101/AZQ/000475
2. Dao HHH, Burns MJ, Kha R et al.: The relationship between metabolic syndrome and frailty in older people: a systematic review and meta-analysis. Geriatrics (Basel) 2022; 7 (4): 76. doi: 10.3390/geriatrics7040076
3. Tural U, Iosifescu DV: Adiponectin in anorexia nervosa and its modifiers: a meta-regression study. Int J Eat Disord 2022; 55: 1279-1290. doi: 10.1002/eat.23753. Epub 2022 Jun 11
4. Hiromine Y, Noso S, Rakugi H et al.: Poor glycemic control rather than types of diabetes is a risk factor for sarcopenia in diabetes mellitus: The MUSCLES-DM study. J Diabetes Investig 2022 Jul 7. doi: 10.1111/jdi.13882. Epub ahead of print
5. Sanz-Cánovas J, López-Sampalo A, Cobos-Palacios L et al.: Management of type 2 diabetes mellitus in elderly patients with frailty and/or sarcopenia. Int J Environ Res Public Health 2022; 19: 8677. Published 2022 Jul 16. doi: 10.3390/ijerph19148677
6. Mone P, Lombardi A, Gambardelle J et al.: Empagliflozin improves cognitive impairment in frail older adults with type 2 diabetes and heart failure with preserved ejection fraction. Diabetes Care 2022. Epub ahead of print
7. Braun AK, Kubiak T, Kuntsche J et al.: SGS: a structured treatment and teaching programme for older patients with diabetes mellitus – a prospective randomised controlled multi-centre trial. Age Ageing 2009; 38: 390-396. doi: 10.1093/ageing/afp056
→Diabetes bei Frauen und Männern – die Unterschiede (Seite 158 – 162)
1. International Diabetes Federation: IDF Diabetes Atlas. 10th ed. International Diabetes Federation, Brussels, 2021
2. Kautzky-Willer A, Harreiter J, Pacini G: Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 2016; 37: 278-316. Epub 2016 May 10. doi: 10.1210/er.2015-1137
3. Kautzky-Willer A, Handisurya A: Metabolic diseases and associated complications: sex and gender matter! Eur J Clin Invest 2009; 39: 631-648. Epub 2009 June 06. doi: 10.1111/j.1365-2362.2009.02161.x
4. Anderwald C, Gastaldelli A, Tura A et al.: Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males. J Clin Endocrinol Metab 2011; 96: 515-524. Epub 2010 Dec 15. doi: 10.1210/jc.2010-1398
5. Kautzky-Willer A, Kosi L, Lin J, Mihaljevic R: Gender-based differences in glycaemic control and hypoglycaemia prevalence in patients with type 2 diabetes: results from patient-level pooled data of six randomized controlled trials. Diabetes Obes Metab 2015; 17: 533-540. Epub 2015 Feb 14. doi: 10.1111/dom.12449
6. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ et al.: Sex and gender: modifiers of health, disease, and medicine. Lancet 2020; 396 (10250): 565-582. Epub 2020 Aug 24. doi: 10.1016/S0140-6736(20)31561-0
7. Schütt M, Zimmermann A, Hood R et al.: Gender-specific effects of treatment with lifestyle, metformin or sulfonylurea on glycemic control and body weight: a German multicenter analysis on 9 108 patients. Exp Clin Endocrinol Diabetes 2015; 123: 622-626. Epub 2015 Aug 19. doi: 10.1055/s-0035-1559608
8. Raparelli V, Elharram M, Moura CS et al.: Sex differences in cardiovascular effectiveness of newer glucose-lowering drugs added to metformin in type 2 diabetes mellitus. J Am Heart Assoc 2020; 9: e012940. doi: 10.1161/JAHA.119.012940
9. Fadini GP, Bonora BM, Avogaro A: SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System. Diabetologia 2017; 60: 1385-1389. doi: 10.1007/s00125-017-4301-8
10. Kang M, Heo KN, Ah YM et al.: Age- and sex-specific risk of urogenital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: A population-based self-controlled case-series study. Maturitas 2021; 150: 30-36. doi: 10.1016/j.maturitas.2021.06.003
11. Kautzky-Willer A, Harreiter J: Sex and gender differences in therapy of type 2 diabetes. Diabetes Res Clin Pract 2017; 131: 230-241. Epub 2017 Aug 06. doi: 10.1016/j.diabres.2017.07.012
12. Mauvais-Jarvis F, Berthold HK, Campesi I et al.: Sex- and gender-based pharmacological response to drugs. Pharmacol Rev 2021; 73: 730-762. Epub 2021 Mar 04. doi: 10.1124/pharmrev.120.000206
13. Glechner A, Harreiter J, Gartlehner G et al.: Sex-specific differences in diabetes prevention: a systematic review and meta-analysis. Diabetologia 2015; 58: 242-254. Epub 2014 Dec 04. doi: 10.1007/s00125-014-3439-x
14. Gong Q, Zhang P, Wang J et al.: Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol 2019; 7: 452-461. Epub 2019 May 01. doi: 10.1016/S2213-8587(19)30093-2
15. Garcia MJ, McNamara PM, Gordon T, Kannel WB: Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 1974; 23: 105-111. Epub 1974 Feb 01. doi: 10.2337/diab.23.2.105
16. Harreiter J, Fadl H, Kautzky-Willer A, Simmons D: Do women with diabetes need more intensive action for cardiovascular reduction than men with diabetes? Curr Diab Rep 2020; 20 (11): 61. Epub 2020 Oct 10. doi: 10.1007/s11892-020-01348-2
17. Peters SAE, Huxley RR, Woodward M: Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014; 383 (9933): 1973-1980. Epub 2014 Mar 13. doi: 10.1016/S0140-6736(14)60040-4
18. Huxley RR, Peters SA, Mishra GD, Woodward M: Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2015; 3: 198-206. Epub 2015 Feb 11. doi: 10.1016/S2213-8587(14)70248-7
19. Clemens KK, Woodward M, Neal B, Zinman B: Sex disparities in cardiovascular outcome trials of populations with diabetes: a systematic review and meta-analysis. Diabetes Care 2020; 43: 1157-1163. Epub 2020 Apr 22. doi: 10.2337/dc19-2257
20. Kramer CK, Campbell S, Retnakaran R: Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 2019; 62: 905-914. Epub 2019 Mar 08. doi: 10.1007/s00125-019-4840-2
21. Xu G, You D, Wong L et al.: Risk of all-cause and CHD mortality in women versus men with type 2 diabetes: a systematic review and meta-analysis. Eur J Endocrinol 2019; 180: 243-255. Epub 2019 Jan 23. doi: 10.1530/EJE-18-0792
22. Prospective Studies Collaboration, Asia Pacific Cohort Studies Collaboration: Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies. Lancet Diabetes Endocrinol 2018; 6: 538-546. Epub 2018 May 13. doi: 10.1016/S2213-8587(18)30079-2
23. Huxley R, Barzi F, Woodward M: Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 2006; 332 (7533): 73-78. Epub 2005 Dec 24. doi: 10.1136/bmj.38678.389583.7C
24. Kautzky-Willer A, Harreiter J, Abrahamian H et al.: Geschlechtsspezifische Aspekte bei Prädiabetes und Diabetes mellitus – klinische Empfehlungen (Update 2019). Wien Klin Wochenschr 2019; 131 (Suppl 1): 221-228. Epub 2019 Apr 14. doi: 10.1007/s00508-018-1421-1
25. Wright AK, Kontopantelis E, Emsley R et al.: Cardiovascular risk and risk factor management in type 2 diabetes mellitus. Circulation 2019; 139: 2742-2753. Epub 2019 Apr 16. doi: 10.1161/CIRCULATIONAHA.118.039100
26. Ohkuma T, Komorita Y, Peters SAE, Woodward M: Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia 2019; 62: 1550-1560. Epub 2019 Jul 19. doi: 10.1007/s00125-019-4926-x
27. Fujita Y, Morimoto T, Tokushige A et al.: Women with type 2 diabetes and coronary artery disease have a higher risk of heart failure than men, with a significant gender interaction between heart failure risk and risk factor management: a retrospective registry study. BMJ Open Diabetes Res Care 2022; 10 (2). Epub 2022 Apr 28. doi: 10.1136/bmjdrc-2021-002707
28. Vogel B, Acevedo M, Appelman Y et al.: The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet 2021; 397 (10292): 2385-2438. Epub 2021 May 20. doi: 10.1016/S0140-6736(21)00684-X
29. Gerdts E, Regitz-Zagrosek V: Sex differences in cardiometabolic disorders. Nat Med 2019; 25: 1657-1666. Epub 2019 Nov 09. doi: 10.1038/s41591-019-0643-8
30. Anker SD, Butler J, Filippatos G et al.: Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385: 1451-1461. Epub 2021 Aug 28. doi: 10.1056/NEJMoa2107038
31. de Ritter R, Sep SJS, van der Kallen CJH et al.: Sex differences in the association of prediabetes and type 2 diabetes with microvascular complications and function: the Maastricht Study. Cardiovasc Diabetol 2021; 20: 102. Epub 2021 May 09. doi: 10.1186/s12933-021-01290-x
→Diabetestechnologie: ein Update (Seite 163 – 168)
1. Braune K, Heinemann L: Innovationen im Bereich der Digitalisierung/Diabetes-Technologie. In: Kulzer B, Heinemann L (Hrsg.): Digitaliserungs- und Technologiereport Diabetes 2022. Kirchheim, Mainz, 2021. https://www.dut-report.de/2022/04/19/innovationen-im-bereich-der-digitalisierung-diabetestechnologie/ (letzter Zugriff: 22.10.2022)
2. Frielitz FS, Schlüter S, Heinemann L et al.: Der Auftragsverarbeitungsvertrag (AV-Vertrag): Relevanz und praktische Bedeutung für die Diabetologie. Diabetologie 2020; 15: 312-316. doi: 10.1055/a-1185-8945
3. Schlüter S, Deiss D, Gehr B et al.: Glukosemessung und -kontrolle bei Patienten mit Typ-1- oder Typ-2-Diabetes. Diabetologie 2021; 16 (S 02): S119-S141. doi: 10.1055/a-1515-8660
4. Pleus S, Baumstark A, Jendrike N et al.: System accuracy evaluation of 18 CE-marked current-generation blood glucose monitoring systems based on EN ISO 15197:2015. BMJ Open Diabetes Res Care 2020; 8: e001067. doi: 10.1136/bmjdrc-2019-001067
5. Pleus S, Baumstark A, Jendrike N et al.: Bewertung der Genauigkeit von Blutzuckermesssystemen, die von Krankenkassen zur Verordnung empfohlen werden, in Anlehnung an DIN EN ISO 15197: 2015. Diabetologie 2021; 16 (S 01): S80-S81
6. Bolla AS, Priefer R: Blood glucose monitoring – an overview of current and future non-invasive devices. Diabetes Metab Syndr 2020; 14: 739-751. doi: 10.1016/j.dsx.2020.05.016. Epub 2020 May 22
7. Purnamayanti NKD, Wicaksana AL: Digital health services among patients with diabetes during the COVID-19 pandemic: a scoping review. Indian J Endocrinol Metab 2021; 25 (2): 86-92. doi: 10.4103/ijem.ijem_153_21. Epub 2021 Sep 8
8. Schlüter S, Deiss D, Gehr B et al.: Glukosemessung und -kontrolle bei Patienten mit Typ-1- oder Typ-2-Diabetes. Diabetologie 2021; 16 (S 02): S119-S141. doi: 10.1055/a-1515-8660
9. Freckmann G, Nichols JH, Hinzmann R et al.: Standardization process of continuous glucose monitoring: traceability and performance. Clin Chim Acta 2021; 515: 5-12. doi: 10.1016/j.cca.2020.12.025
10. Brazg R, Garg SK, Bhargava A et al.: Evaluation of extended infusion set performance in adults with type 1 diabetes: infusion set survival rate and glycemic outcomes from a pivotal trial. Diabetes Technol Ther 2022; 24: 535-543. doi: 10.1089/dia.2021.0540. Epub ahead of print
11. Thomas A: Algorithmen für die automatisierte Regulierung der Insulinabgabe. Diabetes Stoffw Herz 2021; 30: 118-127
12. Biester T, Bratina N, Lange K et al.: Diabetesberatung zum Hybrid-AID-System bei Typ-1-Diabetes: neue Perspektiven und Therapieempfehlungen. Diabetologie 2020; 15: 147-156. doi: 10.1055/a-1079-4577
13. Deiss D, Waldenmaier D, Carstensen S et al.: Steckbriefe für Systeme zur Automatisierten Insulin-Dosierung. Diabetes Stoffw Herz 2022; 31: 36-43
14. Ng SM: User-driven, open-source diabetes technology (special issue): Paediatric DIY APS. Diabetic Medicine 2022; 39: e14630
15. Braune K, Lal RA, Petruželková L et al.; OPEN International Healthcare Professional Network and OPEN Legal Advisory Group: Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals. Lancet Diabetes Endocrinol 2022; 10: 58-74. doi: 10.1016/S2213-8587(21)00267-9. Epub 2021 Nov 13
16. ESYSTA App & Portal – Digitales Diabetesmanagement. https://esysta-diabetes.com/; Hello better – Online-Kurs Diabetes und Depression. https://hellobetter.de/online-kurse/diabetes-und-depression/; Vitadio – Digitale Therapie für Diabetes Typ 2. https://vitadio.de/
17. Maahs D: Overview of continuous glucose monitoring technology and options – how far have we come? ADA Scientific Sessions 2019. San Francisco, 2019
18. Schlüter S, Freckmann G, Wernsing M et al.: Entwicklung und psychometrische Evaluation eines herstellerunabhängigen Wissenstests zum kontinuierlichen Glukosemonitoring in Echtzeit für insulinbehandelte Menschen mit Diabetes. Diabetologie 2022; 17: 129-135. doi: 10.1055/a-1492-5294
19. Schlüter S, Freckmann G, Heinemann L: Evaluierung des SPECTRUM-Schulungs- und Behandlungsprogramms zum rtCGM: eine multizentrische, prospektive Studie aus der Praxis bei 120 Erwachsenen mit Diabetes. Diabetes Stoffw Herz 2021; 30: 85-94
→Auswirkungen des modernen Glukosemonitorings auf Therapie und Schulung (Seite 175 – 184)
1. Bundesamt für Soziale Sicherung: Nähere Erläuterungen des BAS zu den Anforderungen an Schulungsprogramme in DMP. 2018. https://www.bundesamtsozialesicherung.de/fileadmin/redaktion/DMP/DMP1/20211029DMP-Leitfaden_Anhang_2.pdf (letzter Zugriff: 22.10.2022)
2. Gemeinsamer Bundesausschuss: Beschluss: DMP-Anforderungen-Richtlinie: Änderung Anlage 7 (DMP Diabetes mellitus Typ 1) und Anlage 8 (DMP Diabetes mellitus Typ 1 und Typ 2 – Dokumentation). https://www.g-ba.de/beschluesse/4142/ (letzter Zugriff: 08.10.2020)
3. Hermanns N, Ehrmann D, Schipfer M et al.: The impact of a structured education and treatment programme (FLASH) for people with diabetes using a flash sensor-based glucose monitoring system: results of a randomized controlled trial. Diabetes Research and Clinical Practice 2019; 150: 111-121
4. Schlüter S, Freckmann G, Heinemann L et al.: Evaluation of the SPECTRUM training programme for real-time continuous glucose monitoring: a real-world multicentre prospective study in 120 adults with type 1 diabetes. Diabet Med 2021; 38: e14467
5. Kulzer B, Heinemann L (Hrsg.): Digitalisierungs- und Technologiereport Diabetes. Mainz 2022. Kirchheim, Mainz, 2021
→Typ-2-Diabetes: etablierte Versorgungsangebote aktualisieren, innovative Modelle erproben (Seite 185 – 190)
1. Rückgriff auf die vom Bundesamt für Soziale Sicherung zur Verfügung gestellten Zahlen mit Stand vom 31.12.2021; Quelle: https://www.bundesamtsozialesicherung.de/de/themen/disease-management-programme/dmp-grundlegende-informationen/ (letzter Zugriff: 20.06.2022)
2. Näheres auf der Website der Diabetes Surveillance am Robert Koch-Institut: https://diabsurv.rki.de/Webs/Diabsurv/DE/diabetes-in-deutschland/2-132_DMP_Typ-2-Diabetes_-_Qualitaetszielerreichung.html (letzter Zugriff: 20.06.2022)
3. Beschluss und Tragende Gründe auf der Website des G-BA: https://www.g-ba.de/beschluesse/5503/ (letzter Zugriff: 27.06.2022)
4. Nähere Projektbeschreibung auf der Website des Innovationsausschusses unter https://innovationsfonds.g-ba.de/projekte/neue-versorgungsformen/digin2perio-digital-integrierte-versorgung-von-diabetes-mellitus-typ-2-und-parodontitis.508 (letzter Zugriff: 17.06.2022)
5. Weitere Informationen auf der Website des Innovationsausschusses unter https://innovationsfonds.g-ba.de/projekte/neue-versorgungsformen/leikd-lebensstil-intervention-bei-koronarer-herzkrankheit-und-diabetes.115 (letzter Zugriff: 17.06.2022)
→Betreuung von Menschen mit Diabetes in Apotheken (Seite 191 – 195)
1. ABDA: Kooperation – Diabetes. Kommission Apotheker in der Diabetologie (BAK/DDG). https://www.abda.de/kommission-bak-ddg (letzter Zugriff: 16.06.2022)
2. Bilgin Y: Diabetes und Migration (Vortrag). Apothekerkammer Nordrhein, 26. April 2022
3. Türkisch-Deutsche Gesundheitsstiftung: DAVET-Projekt. https://www.tdgstiftung.de/unsere-projekte/gesundheit/davet-projekte/ (letzter Zugriff: 16.06.2022)
4. Deutsche Diabetes Gesellschaft: Klimawandel und die Auswirkungen auf die fachübergreifende Gesundheitsversorgung im Bereich Diabetes mellitus. diabetes zeitung 2022; 7 (4): 16
5. Bundesärztekammer, Kassenärztliche Bundesvereinigung, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften: Nationale VersorgungsLeitlinie (NVL) Typ-2-Diabetes – Teilpublikation, 2. Auflage. https://www.leitlinien.de/themen/diabetes (letzter Zugriff: 16.06.2022)
6. ABDA: Pharmazeutische Dienstleistungen. https://www.abda.de/pharmazeutische-dienstleistungen/ (letzter Zugriff: 16.06.2022)
→Psychosoziale Versorgung von Menschen mit Diabetes – aktuelle Aspekte (Seite 210 – 216)
1. Davies MJ, D‘Alessio DA, Fradkin J et al.: Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41: 2669-2701. doi: 10.2337/dci18-0033
2. Delamater AM, de Wit M, McDarby V et al.: ISPAD Clinical Practice Consensus Guidelines 2018: Psychological care of children and adolescents with type 1 diabetes. Pediatr Diabetes 2018; 19 (Suppl 27): 237-249. doi: 10.1111/pedi.12736
3. American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR et al.: 14. Children and adolescents: standards of medical care in diabetes – 2022. Diabetes Care 2022; 45 (Suppl 1): S208-S231. doi: 10.2337/dc22-S014
4. American Diabetes Association Professional Practice Committee; American Diabetes Association Professional Practice Committee; Draznin B et al.: 5. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes – 2022. Diabetes Care 2022; 45 (Suppl 1): S60-S82. doi: 10.2337/dc22-S005
5. American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR et al.: 8. Obesity and weight management for the prevention and treatment of type 2 diabetes: standards of medical care in diabetes – 2022. Diabetes Care 2022; 45 (Suppl 1): S113-S124. doi: 10.2337/dc22-S008
6. American Diabetes Association: 12. Older adults: standards of medical care in diabetes – 2021. Diabetes Care 2021; 44 (Suppl 1): S168-S179. doi: 10.2337/dc21-S012
7. Deutsche Diabetes Gesellschaft: S3-Leitlinie Therapie des Typ-1-Diabetes. 2. Auflage. AWMF-Registernummer: 057-013. www.awmf.org/leitlinien/detail/ll/057-013.html (letzter Zugriff: 22.10.2022)
8. Bundesärztekammer, Kassenärztliche Bundesvereinigung, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften: Nationale VersorgungsLeitlinie Typ-2-Diabetes – Teilpublikation der Langfassung, 2. Auflage. Version 1. 2021. doi: 10.6101/AZQ/000475. www.leitlinien.de/diabetes (letzter Zugriff: 10.06.2022)
9. Zeyfang A, Wernecke J, Bahrmann A: Diabetes mellitus at an elderly age. Exp Clin Endocrinol Diabetes 2021; 129 (S 01): S20-S26. doi: 10.1055/a-1284-6023
10. Neu A, Bürger-Büsing J, Danne T et al.: Diagnosis, therapy and follow-up of diabetes mellitus in children and adolescents. Exp Clin Endocrinol Diabetes 2019; 127 (S 01): S39-S72. doi: 10.1055/a-1018-8963
11. Dehn-Hindenberg A, Saßmann H, Berndt V et al.: Long-term occupational consequences for families of children with type 1 diabetes: the mothers take the burden. Diabetes Care 2021; 44: 2656-2663. doi: 10.2337/dc21-0740
12. Nicolucci A, Kovacs Burns K, Holt RI et al.: Correlates of psychological outcomes in people with diabetes: results from the second Diabetes Attitudes, Wishes and Needs (DAWN2™) study. Diabet Med 2016; 33: 1194-1203. doi: 10.1111/dme.13178
13. Lange K, Kordonouri O: Kinder mit Diabetes in der Schule. Diabetologe 2021; 17: 463–474
14. Moulton CD, Pickup JC, Ismail K: The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol 2015; 3: 461-471. doi: 10.1016/S2213-8587(15)00134-5
15. Beran M, Muzambi R, Geraets A et al.: The bidirectional longitudinal association between depressive symptoms and HbA1c: a systematic review and meta-analysis. Diabet Med 2022; 39: e14671. doi: 10.1111/dme.14671
16. Pouwer F, Schram MT, Iversen MM et al.: How 25 years of psychosocial research has contributed to a better understanding of the links between depression and diabetes. Diabet Med 2020; 37: 383-392. doi: 10.1111/dme.14227
17. Kulzer B, Albus C, Herpertz S et al.: Psychosocial factors and diabetes. Exp Clin Endocrinol Diabetes 2021; 129 (S 01): S91-S105. doi: 10.1055/a-1284-6524
18. Bisio A, Brown SA, McFadden R et al.: Sleep and diabetes-specific psycho-behavioral outcomes of a new automated insulin delivery system in young children with type 1 diabetes and their parents. Pediatr Diabetes 2021; 22: 495-502. doi: 10.1111/pedi.13164
19. Weissberg-Benchell J, Shapiro JB, Hood K et al. Assessing patient-reported outcomes for automated insulin delivery systems: the psychometric properties of the INSPIRE measures. Diabet Med 2019; 36: 644-652. doi: 10.1111/dme.13930
20. Chakrabarti A, Trawley S, Kubilay E et al.: Closed-loop insulin delivery effects on glycemia during sleep and sleep quality in older adults with type 1 diabetes: results from the ORACL trial. Diabetes Technol Ther 2022; 24: 666-671. Epub 2022 Jul 4. doi: 10.1089/dia.2022.0110
21. Kordonouri O, Lange K, Biester T et al.: Determinants of glycaemic outcome in the current practice of care for young people up to 21 years old with type 1 diabetes under real-life conditions. Diabet Med 2020; 37: 797-804. doi: 10.1111/dme.14130
22. Nordentoft M, Rod NH, Bonde JP et al.: Effort-reward imbalance at work and risk of type 2 diabetes in a national sample of 50,552 workers in Denmark: a prospective study linking survey and register data. J Psychosom Res 2020; 128: 109867. doi: 10.1016/j.jpsychores.2019.109867
23. Zhou Y, Chi J, Lv W, Wang Y: Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev 2021; 37: e3377. doi: 10.1002/dmrr.3377
24. Dubey S, Biswas P, Ghosh R et al.: Psychosocial impact of COVID-19. Diabetes Metab Syndr 2020; 14: 779-788. doi: 10.1016/j.dsx.2020.05.035
25. Gregg EW, Sophiea MK, Weldegiorgis M: Diabetes and COVID-19: population impact 18 months into the pandemic. Diabetes Care 2021; 44: 1916-1923. doi: 10.2337/dci21-0001
26. Stephenson T, Pinto Pereira SM, Shafran R et al.: Physical and mental health 3 months after SARS-CoV-2 infection (long COVID) among adolescents in England (CLoCk): a national matched cohort study [published correction appears in Lancet Child Adolesc Health 2022; 6: e21]. Lancet Child Adolesc Health 2022; 6: 230-239. doi: 10.1016/S2352-4642(22)00022-0
27. Maizel JL, Dixon BN, Walker AF: Psychological outcomes of the COVID-19 pandemic on people with type 1 diabetes globally: a scoping review. Curr Diabetes Rev 2022 Jun 9 (Epub ahead of print). doi: 10.2174/1573399818666220609154132
28. Gemeinsamer Bundesausschuss: Richtlinie des Gemeinsamen Bundesausschusses über die 21. Änderung der DMP-Anforderungen-Richtlinie (DMP-A-RL): Änderung der Anlage 7 (DMP Diabetes mellitus Typ 1) und der Anlage 8 (DMP Diabetes mellitusTyp 1 und Typ 2 – Dokumentation). https://www.g-ba.de/downloads/40-268-6304/2020-01-16_DMP-A-RL_Aenderung-Anlage-7-8-DMP-Diabetes-mellitus_Servicedokument.pdf (letzter Zugriff: 10.06.2022)
29. Kempf K, Altpeter B, Berger J et al.: Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in advanced stages of type 2 diabetes: a randomized controlled trial. Diabetes Care 2017; 40: 863-871. doi: 10.2337/dc17-0303
30. Gerlinger G, Mangiapane N, Sander J: Digitale Gesundheitsanwendungen (DiGA) in der ärztlichen und psychotherapeutischen Versorgung. Chancen und Herausforderungen aus Sicht der Leistungserbringer. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64: 1213-1219. doi: 10.1007/s00103-021-03408-8
→Aktuelle DPV-Registerdaten zur Versorgungslage von Kindern und Jugendlichen mit Diabetes (Seite 217 – 227)
1. Hofer SE, Schwandt A, Holl RW: Standardized documentation in pediatric diabetology: experience from Austria and Germany. J Diabetes Sci Technol 2016; 10: 1042-1049
2. Schöttler H, Auzanneau M, Best F et al.: Insulinpumpe, kontinuierliche und kapilläre Glukosemessung bei Kindern, Jugendlichen und Erwachsenen mit Diabetes mellitus: Daten des DPV-Registers zwischen 1995 und 2019. Diabetologie 2020; 15: 477-486
3. Karges B, Schwandt A, Heidtmann B et al.: Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 2017; 318: 1358-1366
4. Auzanneau M, Karges B, Neu A et al.: Use of insulin pump therapy is associated with reduced hospital-daysin the long-term: a real-world study of 48,756 pediatric patients with type 1 diabetes. Eur J Pediatr 2021; 180: 597-606
5. Kamrath C, Tittel SR, Kapellen TM et al.: Early versus delayed insulin pump therapy in children with newly diagnosed type 1 diabetes: results from the multicentre, prospective diabetes follow-up DPV registry. Lancet Child Adolesc Health 2021; 5: 17-25
6. Auzanneau M, Rosenbauer J, Maier W et al.: Heterogeneity of access to diabetes technology depending on area deprivation and demographics between 2016 and 2019 in Germany. J Diabetes Sci Technol 2021; 15: 1059-1068. doi: 10.1177/19322968211028608
7. Grimsmann JM, von Sengbusch S, Freff M et al.: Glucose management indicator based on sensor data and laboratory HbA1c in people with type 1 diabetes from the DPV database: differences by sensor type. Diabetes Care 2020; 43: e111-e112. doi: 10.2337/dc20-0259
8. Karges B, Kapellen T, Wagner VM et al.: Glycated hemoglobin A1c as a risk factor for severe hypoglycemia in pediatric type 1 diabetes. Pediatr Diabetes 2017; 18: 51-58
9. Schienkiewitz A, Brettschneider AK, Damerow S et al.: Übergewicht und Adipositas im Kindes- und Jugendalter in Deutschland – Querschnittergebnisse aus KiGGS Welle 2 und Trends. J Health Monitor 2018; 3 (1): 16-23. doi: 10.17886/RKI-GBE-2018-005.2
10. De Salvo DJ, Miller KM, Hermann JM et al.: Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: international comparison from the T1D Exchange and DPV Initiative. Pediatric Diabetes 2018; 19: 1271–1275
11. Hammersen J, Reschke F, Tittel SR et al.: Metabolic control during the SARS-CoV-2 lockdown in a large German cohort of pediatric patients with type 1 diabetes: results from the DPV initiative. Pediatr Diabetes 2022; 23: 351-361
12. Hartmann B, Tittel SR, Femerling M et al.: COVID-19 lockdown periods in 2020: good maintenance of metabolic control in adults with type 1 and type 2 diabetes. Exp Clin Endocrinol Diabetes 2022; 130: 621-626. doi: 10.1055/a-1743-2537
13. Bächle C, Scheuing N, Kruse J et al.: Gestörtes Essverhalten und Essstörungen bei Typ-1-Diabetes: Ein Zusammenspiel mit Relevanz für die Diabetestherapie? Diabetes Stoffw Herz 2014; 23: 156-160
14. Hilgard D, Konrad K, Meusers M et al.: Comorbidity of attention deficit hyperactivity disorder and type 1 diabetes in children and adolescents: analysis based on the multicentre DPV registry. Pediatr Diabetes 2016; 18: 706-713
15. Plener PL, Molz E, Berger G et al.: Depression, metabolic control, and antidepressant medication in young patients with type 1 diabetes. Pediatr Diabetes 2015; 16: 58-66
16. Eckert A, Domhardt M, Reinauer C et al.: Non-suicidal self-injury in adolescents and young adults with type 1 diabetes: clinical characteristics from a German diabetes-patient registry (DPV). Psychiatry Res 2021; 297: 113733. doi: 10.1016/j.psychres.2021.113733
17. Galler A, Hilgard D, Bollow E et al.: Psychological care in children and adolescents with type 1 diabetes in a real-world setting and associations with metabolic control. Pediatr Diabetes 2020; 21: 1050-1058. doi: 10.1111/pedi.13065
18. Köstner K, Geirhos A, Ranz R et al.: Angst und Depression bei Typ-1-Diabetes – Erste Ergebnisse des Screenings auf psychische Komorbiditäten bei Jugendlichen und jungen Erwachsenen im Rahmen des COACH-Konsortiums. Diabetologie 2022; 17: 197-207
19. Prinz N, Denzer C, Bächle C et al.: Inzidenter Typ-2-Diabetes bei Kindern und Jugendlichen – Zunahme oder spontane Schwankung seit Covid-19? (Abstrakt) Diabetologie 2022; 17 (S 01): S41
20. Warncke K, Kummer S, Raile K et al.: Frequency and characteristics of MODY 1 (HNF4AMutation) and MODY 5 (HNF1BMutation): analysis from the DPV database. J Clin Endocrinol Metab 2019; 104: 845–855
21. Kapellen T, Müther S, Schwandt A et al.: Transition to adult diabetes care in Germany-High risk for acute complications and declining metabolic control during the transition phase. Pediatr Diabetes 2018; 19: 1094-1099. doi: 10.1111/pedi.12687
→Diabetes und Migranten (Seite 228 – 232)
1. Robert Koch-Institut (Hrsg.): Gesundheit in Deutschland. Gesundheitsberichtserstattung des Bundes. Gemeinsam getragen von RKI und Destatis. RKI, Berlin, 2015. doi: 10.17886/rkipubl-2015-003-3
2. Berger F: Typ-2-Diabetes und Migranten: Menschen aus verschiedenen Sprach- und Kulturräumen. Diabetologie 2018; 13: 241-255. doi: 10.1055/s-0043-124751
3. Statistisches Bundesamt: Gut jede vierte Person in Deutschland hatte 2021 einen Migrationshintergrund. Pressemitteilung Nr. 162 vom 12. April 2022. https://www.destatis.de/DE/Presse/Pressemitteilungen/2022/04/PD22_162_125.html (letzter Zugriff: 17.04.2022)
4. Jacobs E, Rathmann W: Epidemiologie des Diabetes. Diabetologie 2017; 12: 403-468
5. White S, Hamad R, Li X et al.: Long-term effects of neighbourhood deprivation on diabetes risk: quasi-experimental evidence from a refugee dispersal policy in Sweden. Lancet Diabetes Endocrinol 2016; 4: 517-524. doi: org/10.1016/S2213-8587(16)30009-2
6. Hassanein M, Hussein Z, Shaltout I et al.: The DAR 2020 Global survey: Ramadan fasting during COVID 19 pandemic and the impact of older age on fasting among adults with Type 2 diabetes. Diabetes Res Clin Pract 2021; 173: 108674. doi: 10.1016/j.diabres.2021.108674
7. International Diabetes Federation, DAR International Alliance: Diabetes and Ramadan: Practical Guidelines 2021. International Diabetes Federation, Brussels, 2021. https://www.idf.org/our-activities/education/diabetes-and-ramadan/healthcare-professionals.html, www.daralliance.org
→Gesundheitsökonomische Aspekte des Diabetes mellitus (Seite 233 – 240)
1. Köster I, Schubert I, Huppertz E: Fortschreibung der KoDiM-Studie: Kosten des Diabetes mellitus 2000–2009. Dtsch Med Wochenschr 2012; 137: 1013-1016
2. König H, Rommel A, Baumert J et al.: Excess costs of type 2 diabetes and their sociodemographic and clinical determinants: a cross-sectional study using data from the German Health Interview and Examination Survey for Adults (DEGS1). BMJ Open 2021; 11: e043944
3. Jacobs E, Hoyer A, Brinks R et al.: Healthcare costs of type 2 diabetes in Germany. Diabet Med 2017; 34: 855-861
4. Kähm K, Stark R, Laxy M et al.: Assessment of excess medical costs for persons with type 2 diabetes according to age groups: an analysis of German health insurance claims data. Diabet Med 2020; 37: 1752-1758
5. Gabler M, Picker N, Geier S et al.: Real-world clinical outcomes and costs in type 2 diabetes mellitus patients after initiation of insulin therapy: a German claims data analysis. Diabetes Res Clin Pract 2021; 174: 108734
6. Kähm K, Laxy M, Schneider U et al.: Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care 2018; 41: 971-978
7. Hoffmann F, Claessen H, Morbach S et al.: Impact of diabetes on costs before and after major lower extremity amputations in Germany. J Diab Comp 2013; 27: 467-472
8. Huang CJ, Hsieh HM, Chiu HC et al.: Health care utilization and expenditures of patients with diabetes comorbid with depression disorder: a national population-based cohort study. Psychiatry Investig 2017; 14: 770-778
9. Egede LE, Bishu KG, Walker RJ, Dismuke CE: Impact of diagnosed depression on healthcare costs in adults with and without diabetes: United States, 2004-2011. J Affect Disord 2016; 195: 119-126
10. Lehnert T, Konnopka A, Riedel-Heller S, König HH: Diabetes mellitus and comorbid depression: economic findings from a systematic literature review. Psychiatr Prax 2011; 38: 369-375
11. Brüne M, Linnenkamp U, Andrich S et al.: Health care use and costs in individuals with diabetes with and without comorbid depression in Germany: results of the cross-sectional DiaDec study. Diabetes Care 2021; 44: 407-415
12. Egede LE, Walker RJ, Bishu K, Dismuke CE: Trends in costs of depression in adults with diabetes in the United States: Medical Expenditure Panel Survey, 2004-2011. J Gen Intern Med 2016; 31: 615-622
13. Icks A, Claessen H, Strassburger K et al.: Patient time costs attributable to healthcare use in diabetes: results from the population-based KORA survey in Germany. Diabet Med 2013; 30: 1245-1249
14. Icks A, Haastert B, Arend W et al.: Time spent on self management by people with diabetes: results from the population based KORA survey in Germany. Diabet Med 2019; 36: 970-981
15. Chernyak N, Jülich F, Kasperidus J et al.: Time cost of diabetes: development of a questionnaire to assess time spent on diabetes self-care. J Diab Comp 2017; 31: 260–266.
16. Ulrich S, Holle R, Wacker M et al.: Cost burden of type 2 diabetes in Germany: results from the population-based KORA studies. BMJ Open 2016; 6: e012527
17. Icks A, Haastert B, Arend W et al.: Patient time costs due to self-management in diabetes may be as high as direct medical costs: results from the population-based KORA survey FF4 in Germany. Diabet Med 2020; 37: 895-897
18. Montalbo J, Ogurtsova K, Vomhof M, Icks A: Modellbasierte gesundheitsökonomische Evaluation der Diabetesprävention – Typ-2-Diabetes. Diabetologe 2020; 16: 220-225
19. Schöffski O, Graf von der Schulenburg JM (Hrsg.): Gesundheitsökonomische Evaluationen. Springer, Heidelberg, Dordrecht, London, New York, 2012
20. Tönnies T, Hoyer A, Brinks R: Productivity-adjusted life years lost due to type 2 diabetes in Germany in 2020 and 2040. Diabetologia 2021; 64: 1288-1297
21. Bächle CC, Holl RW, Straßburger K et al.: Costs of paediatric diabetes care in Germany: current situation and comparison with the year 2000. Diabet Med 2012; 29: 1327-1334
22. Dehn-Hindenberg A, Saßmann H, Berndt V et al.: Long-term occupational consequences for families of children with type 1 diabetes: the mothers take the burden. Diabetes Care 2021; 44: 2656-2663
23. International Diabetes Federation: Diabetes Atlas. 10th Edition. International Diabetes Federation, Brussels, 2021
24. da Rocha Fernandes J, Ogurtsova K, Linnenkamp U et al.: IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract 2016; 117: 48-54
→Das Deutsche Zentrum für Diabetesforschung – Aktuelles aus der Wissenschaft (Seite 241 – 246)
1. Wagner R, Heni M, Tabák AG et al.: Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med 2021; 27: 49-57. doi: 10.1038/s41591-020-1116-9
2. Fritsche A, Wagner R, Heni M et al.: Different effects of lifestyle intervention in high- and low-risk prediabetes. Diabetes 2021; 70: 2785-2795. doi: 10.2337/db21-0526
3. Zaharia OP, Strassburger K, Strom A et al.: Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694. doi: 10.1016/S2213-8587(19)30187-1
4. Ratter-Rieck JM, Maalmi H, Trenkamp S et al: Leukocyte counts and T-cell frequencies differ between novel subgroups of diabetes and are associated with metabolic parameters and biomarkers of inflammation. Diabetes 2021; 70: 2652-2662. doi: 10.2337/db21-0364. Epub 2021 Aug 30
5. Eichelmann F, Sellem L, Wittenbecher C et al.: Deep lipidomics in human plasma: cardiometabolic disease risk and effect of dietary fat modulation. Circulation 2022; 146: 21-35. doi: 10.1161/CIRCULATIONAHA.121.056805. Epub 2022 Apr 15
6. Loft A, Schmidt SF, Caratti G et al.: A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metab 2022; 34: 473-486.e9. doi: 10.1016/j.cmet.2022.01.004
7. Kemter E, Müller A, Neukam M et al.: Sequential in vivo labeling of insulin secretory granule pools in INS-SNAP transgenic pigs. Proc Natl Acad Sci U S A 2021; 118: e2107665118. doi: 10.1073/pnas.2107665118
8. Stefan N, Sippel K, Heni M et al.: Obesity and impaired metabolic health increase risk of COVID-19-related mortality in young and middle-aged adults to the level observed in older people: the LEOSS Registry. Front Med (Lausanne) 2022; 9: 875430. doi: 10.3389/fmed.2022.875430
9. Rathmann W, Kuss O, Kostev K: Incidence of newly diagnosed diabetes after Covid-19. Diabetologia 2022; 65: 949-954. doi: 10.1007/s00125-022-05670-0
10. Steenblock C, Richter S, Berger I et al.: Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun 2021; 12: 3534. doi: 10.1038/s41467-021-23886-3
→Diabetes mellitus in Deutschland – politische Handlungsfelder 2022/2023 (Seite 261 – 266)
1. Schumm-Draeger P, Kapitza T, Mann K et al.: Ökonomisierung in der Medizin – Rückhalt für ärztliches Handeln. Dtsch Arztebl 2017; 114: A2238-A2240. https://www.deutsche-diabetes-gesellschaft.de/politik/projekte/klinik-codex (letzter Zugriff: 30.06.2022)
2. Deutsche Diabetes Gesellschaft: Empfehlungen der DDG zur Nationalen Diabetesstrategie: Welche konkreten Maßnahmen müssen nun folgen? https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen, Politische_Empfehlungen_DDG_2021.pdf (letzter Zugriff: 30.06.2022)
3. Deutsche Diabetes Gesellschaft (DDG), Deutsches Zentrum für Diabetesforschung (DZD), Deutsche Gesellschaft für Endokrinologie (DGE): Gemeinsame Stellungnahme DDG / DZD / DGE zur Versorgung von Menschen mit Diabetes und endokrinen Erkrankungen. Ausbildungskapazitäten im Bereich Diabetologie und Endokrinologie müssen ausgebaut werden. https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen, Positionspapier_Lehrstuehle_DDG_DZD_DGE.pdf (letzter Zugriff: 30.06.2022)
4. Wissenschaftsrat: Empfehlungen zur künftigen Rolle der Universitätsmedizin zwischen Wissenschafts- und Gesundheitssystem (Drs. 9192-21). Juli 2021. https://www.wissenschaftsrat.de/download/2021/9192-21.html (letzter Zugriff: 30.06.2022)
5. Ziegler R, Neu A: Diabetes in childhood and adolescence – a guideline-based approach to diagnosis, treatment, and follow-up. Dtsch Arztebl Int 2018; 115: 146-146. doi: 10.3238/arztebl.2018.0146
6. Auzanneau M, Fritsche A, Icks A et al.: Diabetes in the hospital – a nationwide analysis of all hospitalized cases in Germany with and without diabetes, 2015–2017. Dtsch Arztebl Int 2021; 118: 407–412. doi: 10.3238/arztebl.m2021.0151
7. Fritsche A: Diabetes mellitus in der Klinik: Mehr Strukturen schaffen Dtsch Arztebl 2017; 114 (Suppl: Perspektiven der Diabetologie): [16]. doi: 10.3238/PersDia.2017.10.13.04
8. Gallwitz B, Neu A, Kellerer M et al.: Diabetes mellitus in Deutschland – Politische Handlungsfelder 2021/22. In: Deutsche Diabetes Gesellschaft, diabetesDE – Deutsche Diabetes-Hilfe (Hrsg.): Deutscher Gesundheitsbericht Diabetes 2022. Kirchheim, Mainz, 2021: 268-274
9. Müller-Wieland D, Ickrath M für die Kommission Digitalisierung: Code of Conduct Digital Health der DDG. Aktualisierung 2022. https://www.deutsche-diabetes-gesellschaft.de/politik/projekte/code-of-conduct (letzter Zugriff: 30.06.2022)
→Neuausrichtung der Weiterbildung für die Gesundheitsfachberufe der DDG (Seite 267 – 272)
1. Fachkommission nach § 53 PflBG: Standardisierte Module zum Erwerb erweiterter Kompetenzen zur Ausübung heilkundlicher Aufgaben. https://www.bibb.de/dienst/veroeffentlichungen/de/publication/show/17717
2. Schaeffer D, Petermann F: Patientenberatung / Patientenedukation (letzte Aktualisierung am 06.03.2020). https://leitbegriffe.bzga.de/alphabetisches-verzeichnis/patientenberatung-patientenedukation/ (letzter Zugriff: 10.02.2022)
3. Siehe auch: Netzwerk Patienten- und Familienedukation in der Pflege e.V. | Jan. 2022
→Kinder im Fokus der DDG (Seite 273 – 275)
1. Neu A, Bürger-Büsing J, Danne T et al.: Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kinder- und Jugendalter. S3-Leitlinie der Deutschen Diabetes Gesellschaft (DDG). Diabetologie 2016; 11: 35-94
2. Mönkemöller K, Kamrath C, Holl RW: Ketoazidose bei Manifestation des Typ 1 Diabetes bei Kindern und Jugendlichen während der COVID-19-Pandemie. In: Deutsche Diabetes Gesellschaft, diabetesDE – Deutsche Diabetes-Hilfe (Hrsg.): Deutscher Gesundheitsbericht Diabetes 2022. Kirchheim, Mainz, 2021: 71-76
3. Kamrath C, Rosenbauer J, Eckert AJ et al.: Incidence of type 1 diabetes in children and adolescence during the COVID-19 pandemic in Germany: results from the DPV-registry. Diabetes Care 2022; 45: 1762-1771
4. Cherubini V, Marino M, Carle F et al.: Effectiveness of ketoacidosis prevention campaigns at diagnosis of type 1 diabetes in children: a systematic review and meta-analysis. Diabetes Res Clin Pract 2021; 175: 108838
5. Holder M, Ehehalt S: Significant reduction of ketoacidosis at diabetes onset in children and adolescents with type 1 diabetes – the Stuttgart Diabetes Awareness Campaign, Germany. Pediatric Diabetes 2020; 21: 1227-1231
6. Dehn-Hindenberg A, Saßmann H, Berndt V et al.: Long-term occupational consequences for families of children with type 1 diabetes: the mothers take the burden. Diabetes Care 2021; 44: 2656-2663
7. Maulbecker-Armstrong C, Schulenberg D, Binder D (Hrsg.): Gutachterliche Stellungnahme im Rahmen von Projektphase IV des länderübergreifenden Modellprojektes "Schulgesundheitsfachkräfte" in Brandenburg und Hessen. 2020. https://www.thm.de/ges/images/Downloads/Forschung/Gutachten_20201223_Schulgesundheitsfachkr%C3%A4fte.pdf (letzter Zugriff: 23.10.2022)
8. Heinrich M, Boß K, Wendenburg J et al. für die AG Inklusion der Arbeitsgemeinschaft Pädiatrische Diabetologie: Unzureichende Versorgung gefährdet Inklusion von Kindern mit Diabetes mellitus Typ 1. Diabetologie 2019; 14: 380-387
→Neustart Ernährungspolitik: welche Weichen die Regierung jetzt stellen muss (Seite 278 – 283)
1. Robert Koch-Institut: Fast Food-Konsum der Jugendlichen in Deutschland – Ergebnisse aus EsKiMo II. 2020. https://edoc.rki.de/handle/176904/6408; Emond JA, Longacre MR, Drake KM et al.: Influence of child-targeted fast food TV advertising exposure on fast food intake: a longitudinal study of preschool-age children. Appetite 2019; 140: 134-141. doi: 10.1016/j.appet.2019.05.012
2. Krause L, Mauz E, Houben R et al.: KiGGS Welle 2 (2014 – 2017) – Die zweite Folgeerhebung der "Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland". 2018. https://edoc.rki.de/handle/176904/3050 (letzter Zugriff: 23.10.2022)
3. Deutsche Adipositas-Gesellschaft (DAG), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ): Folgen der Pandemie: Wie Corona das Gesundheitsverhalten von Kindern und Jugendlichen verändert hat. 2022. https://adipositas-gesellschaft.de/wp-content/uploads/2022/05/2022-05-31_DAG-EKFZ_forsa-Umfrage_Ergebnispraesentation_final.pdf (letzter Zugriff: 23.10.2022)
4. World Health Organization: WHO European Regional Obesity Report 2022. https://apps.who.int/iris/handle/10665/353747 (letzter Zugriff: 23.10.2022)
5. Mehr Fortschritt wagen. Koalitionsvertrag zwischen SPD, Bündnis 90/Die Grünen und FDP. 2021. https://www.bundesregierung.de/resource/blob/974430/1990812/04221173eef9a6720059cc353d759a2b/2021-12-10-koav2021-data.pdf?download=1 (letzter Zugriff: 23.10.2022)
6. Effertz T: Kindermarketing für ungesunde Lebensmittel in Internet und TV. Projektbericht, März 2021. https://www.bwl.uni-hamburg.de/irdw/dokumente/kindermarketing2021effertzunihh.pdf (letzter Zugriff: 23.10.2022)
7. Deutsche Allianz Nichtübertragbare Krankheiten (DANK): Pressemeldung: Studie: Kinder sehen pro Tag 15 Werbungen für ungesundes Essen. https://www.dank-allianz.de/pressemeldung/studie-kinder-sehen-pro-tag-15-werbungen-fuer-ungesundesessen.html (letzter Zugriff: 23.10.2022)
8. AOK-Bundesverband, Verbraucherzentrale Bundesverband, Deutsche Allianz Nichtübertragbare Krankheiten (DANK): Policy Brief: Kindermarketing für Lebensmittel | Vorschlag zur Ausgestaltung der Werbebeschränkungen. 2022. https://www.dank-allianz.de/nachricht/zum-schutz-von-kindern-tv-werbeverbot-fuer-ungesunde-lebensmittel-zwischen-6-und-23-uhr-2.html (letzter Zugriff: 23.10.2022)
9. Effertz T: Kindermarketing für ungesunde Lebensmittel in Internet und TV. Projektbericht, März 2021. https://www.bwl.uni-hamburg.de/irdw/dokumente/kindermarketing2021effertzunihh.pdf (letzter Zugriff: 23.10.2022)
10. Deutsche Allianz Nichtübertragbare Krankheiten (DANK): Pressemeldung: Studie: Kinder sehen pro Tag 15 Werbungen für ungesundes Essen. https://www.dank-allianz.de/pressemeldung/studie-kinder-sehen-pro-tag-15-werbungen-fuer-ungesundesessen.html (letzter Zugriff: 23.10.2022)
11. Verbraucherschutzministerkonferenz: Beschlüsse der 18. Verbraucherschutzministerkonferenz 2022. https://www.verbraucherschutzministerkonferenz.de/Beschluesse.html (letzter Zugriff: 23.10.2022)
12. Deutsche Allianz Nichtübertragbare Krankheiten (DANK): Den Tsunami der chronischen Krankheiten stoppen: vier Maßnahmen für eine wirkungsvolle und bevölkerungsweite Prävention. Strategiepapier der Deutschen Allianz Nichtübertragbare Krankheiten (DANK) zur Primärprävention. 2015. https://www.dank-allianz.de/files/content/dokumente/150612_DANK-Strategiepapier.pdf (letzter Zugriff: 23.10.2022)
13. Statistisches Bundesamt: Pressemitteilung: Inflationsrate im März 2022 bei +7,3 %. 12.04.2022. https://www.destatis.de/DE/Presse/Pressemitteilungen/2022/04/PD22_160_611.html (letzter Zugriff: 23.10.2022)
14. tagesschau.de: Streit über die Mehrwertsteuer. 22.04.2022. https://www.tagesschau.de/wirtschaft/verbraucher/senkung-mehrwertsteuer-grundnahrungsmittel-101.html (letzter Zugriff: 23.10.2022)
15. Bandy LK, Scarborough P, Harrington RA et al.: Reductions in sugar sales from soft drinks in the UK from 2015 to 2018. BMC Med 2020; 18: 20. doi: 10.1186/s12916-019-1477-4
16. Heart and Stroke Foundation of Canada: What are other countries doing? 2020. https://stopmarketingtokids.ca/what-are-other-countries-doing/ (letzter Zugriff: 23.10.2022)
17. Brüne M, Linnenkamp U, Icks A: Gesundheitsökonomische Aspekte des Diabetes mellitus. In: Deutsche Diabetes Gesellschaft, diabetesDE – Deutsche Diabetes-Hilfe (Hrsg.): Deutscher Gesundheitsbericht Diabetes 2022. Kirchheim, Mainz, 2021. https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitsbericht (letzter Zugriff: 23.10.2022)
Archiv
- Deutscher Gesundheitsbericht Diabetes 2019 – Literaturlisten
- Deutscher Gesundheitsbericht Diabetes 2020 – Literaturlisten
- Deutscher Gesundheitsbericht Diabetes 2021 – Literaturlisten
- Deutscher Gesundheitsbericht Diabetes 2022 – Literaturlisten
- Deutscher Gesundheitsbericht Diabetes 2024 – Literaturlisten
- zurück zur aktuellen Literaturliste