Der „Deutsche Gesundheitsbericht Diabetes“ wird jedes Jahr neu aufgelegt und beinhaltet die aktuellsten Zahlen und Entwicklungen zur Erkrankung Diabetes mellitus in Deutschland. Er wird in Zusammenarbeit mit zahlreichen Fachexperten erstellt und von der Deutschen Diabetes Gesellschaft und diabetesDE – Deutsche Diabetes-Hilfe herausgegeben.gesundheitsbericht-2024

Deutscher Gesundheitsbericht Diabetes 2024 – Literaturlisten

Klicken Sie auf eine Kapitelüberschrift, um die jeweilige Literaturliste einzusehen:



Epidemiologie des Diabetes in Deutschland (Seite 8 – 13)
1. Heidemann C, Scheidt-Nave C: Prevalence, incidence and mortality of diabetes mellitus in adults in Germany – a review in the framework of the Diabetes Surveillance. J Health Monit 2017; 2: 98 – 121
2. Jacobs E, Rathmann W: Epidemiologie des Diabetes. Diabetologie 2017; 12: 437 – 446
3. Goffrier B, Schulz M, Bätzing-Feigenbaum J: Administrative Prävalenzen und Inzidenzen des Diabetes mellitus von 2009 bis 2015. Versorgungsatlas-Bericht 17/03. Berlin 2017. http://www.versorgungsatlas.de/themen/alle-analysen-nach-datum-sortiert/?tab=6&uid=79 (letzter Zugriff: 23.08.2023)
4. Robert Koch-Institut 2022. Diabetes in Deutschland - Erwachsene - Prävalenz dokumentierter Diabetes. Online: https://diabsurv.rki.de/Webs/Diabsurv/DE/diabetes-in-deutschland/2-112_Praevalenz_dokumentierter_Diabetes.html (Zugriff am 18. September 2023)
5. Heidemann C, Du Y, Paprott R et al.: Temporal changes in the prevalence of diagnosed diabetes, undiagnosed diabetes and prediabetes: findings from the German Health Interview and Examination Surveys in 1997 – 1999 and 2008 – 2011. Diabet Med 2016; 33: 1406 – 1414
6. Boehme MW, Buechele G, Frankenhauser-Mannuss J et al.: Prevalence, incidence and concomitant co-morbidities of type 2 diabetes mellitus in South Western Germany – a retrospective cohort and case control study in claims data of a large statutory health insurance. BMC Public Health 2015; 15: 855
7. Spieker J, Vetter VM, Drewelies J et al.: Diabetes type 2 in the Berlin Aging Study II: Cross-sectional and longitudinal data on prevalence, incidence and severity over on average seven years of follow-up. Diabet Med 2023; 40: e15104
8. Tönnies T, Röckl S, Hoyer A et al.: Projected number of people with diagnosed Type 2 diabetes in Germany in 2040. Diabet Med 2019; 36: 1217 – 1225
9. Tönnies T, Hoyer A, Brinks R et al.: Spatio-temporal trends in the incidence of type 2 Diabetes in Germany. Dtsch Arztebl Int 2023; 120: 173 – 179
10. Jacobs E, Rathmann W, Tönnies T et al.: Age at diagnosis of type 2 diabetes in Germany: a nationwide analysis based on claims data from 69 million people in Germany. Diabet Med 2019; 37: 1723 – 1727
11. Reitzle L, Schmidt C, Heidemann C et al.: Gestationsdiabetes in Deutschland: Zeitliche Entwicklung von Screeningquote und Prävalenz. J Health Monit 2021; 6: 3 – 19
12. Barmer: "Diabetes-Atlas" der BARMER, Regionale Diabetesprävalenzen in Deutschland 2020. https://www.diabetesde.org/system/files/documents/diabetes-atlas_2020.pdf (letzter Zugriff: 09.06.2022)
13. Kauhl B, Pieper J, Schweikart J et al.: Die räumliche Verbreitung des Typ 2 Diabetes Mellitus in Berlin – Die Anwendung einer geografisch gewichteten Regressionsanalyse zur Identifikation ortsspezifischer Risikogruppen. Gesundheitswesen 2018; 80 (S 02): S64 – S70
14. Kauhl B, Schweikart J, Krafft T et al.: Do the risk factors for type 2 diabetes mellitus vary by location? A spatial analysis of health insurance claims in Northeastern Germany using kernel density estimation and geographically weighted regression. Int J Health Geogr 2016; 15: 38
15. Deutsche Gesellschaft für Ernährung (Hrsg.): 14. DGE-Ernährungsbericht. DGE, Bonn, 2020
16. Finger JD, Mensink G, Lange C et al.: Health-enhancing physical activity during leisure time among adults in Germany. J Health Monit 2017; 2: 35 – 42
17. Starker A, Kuhnert R, Hoebel J et al.: Smoking behaviour and passive smoke exposure of adults – results from GEDA 2019/2020-EHIS. J Health Monit 2022; 7: 6 – 20
18. Zeiher J, Finger JD, Kuntz B et al.: Zeitliche Trends beim Rauchverhalten Erwachsener in Deutschland. Bundesgesundheitsblatt 2018; 61: 1365 – 1376
19. Richter A, Schienkiewitz A, Starker A et al.: Health-promoting behaviour among adults in Germany – results from GEDA 2019/2020-EHIS. J Health Monit 2021; 6: 26 – 44
20. Tamayo T, Brinks R, Hoyer A et al.: The prevalence and incidence of diabetes in Germany: an analysis of statutory health insurance data on 65 million individuals from the years 2009 and 2010. Dtsch Arztebl Int 2016; 113: 177 – 182
21. Rosenbauer J, Neu A, Rothe U et al.: Types of diabetes are not limited to age groups: type 1 diabetes in adults and type 2 diabetes in children and adolescents. J Health Monit 2019; 4: 29 – 49
22. Stahl-Pehe A, Kamrath C, Prinz N et al.: Prevalence of type 1 and type 2 diabetes in children and adolescents in Germany from 2002 to 2020: a study based on electronic health record data from the DPV registry. J Diabetes 2022; 14: 840 – 850
23. Jacobs E, Hoyer A, Brinks R et al.: Burden of mortality attributable to diagnosed diabetes: a nationwide analysis based on claims data from 65 million people in Germany. Diabetes Care 2017; 40: 1703 – 1709
24. Schmidt C, Reitzle L, Heidemann C et al.: Excess mortality in adults with documented diabetes in Germany: routine data analysis of all insurance claims in Germany 2013-2014. BMJ Open 2021; 11: e041508
25. Tomic D, Morton JI, Chen L et al.: Lifetime risk, life expectancy, and years of life lost to type 2 diabetes in 23 high-income jurisdictions: a multinational, population-based study. Lancet Diabetes Endocrinol 2022; 10: 795 – 803
26. Carstensen B, Rønn PF, Jørgensen ME: Lifetime risk and years lost to type 1 and type 2 diabetes in Denmark, 1996 – 2016. BMJ Open Diabetes Res Care 2021; 9: e001065
27. Gregg EW, Cheng YJ, Srinivasan M et al.: Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet 2018; 391: 2430 – 2440
28. Carstensen B, Kristensen JK, Ottosen P et al.: The Danish National Diabetes Register: trends in incidence, prevalence and mortality. Diabetologia 2008; 51: 2187 – 2196
29. Lind M, Garcia-Rodriguez LA, Booth GL et al.: Mortality trends in patients with and without diabetes in Ontario, Canada and the UK from 1996 to 2009: a population-based study. Diabetologia 2013; 56: 2601 – 2608
30. Chen L, Islam RM, Wang J et al.: A systematic review of trends in all-cause mortality among people with diabetes. Diabetologia 2020; 63: 1718 – 1735
31. Gyldenkerne C, Knudsen JS, Olesen KKW et al.: Nationwide trends in cardiac risk and mortality in patients with incident type 2 diabetes: a Danish cohort study. Diabetes Care 2021; 11: dc210383 (Online ahead of print)
32. Pearson-Stuttard J, Bennett J, Cheng YJ et al.: Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol 2021; 9: 165 – 173
33. Magliano DJ, Chen L, Carstensen B et al.: Trends in all-cause mortality among people with diagnosed diabetes in high-income settings: a multicountry analysis of aggregate data. Lancet Diabetes Endocrinol 2022; 10: 112 – 119
34. Ruiz PLD, Chen L, Morton JI et al.: Mortality trends in type 1 diabetes: a multicountry analysis of six population-based cohorts. Diabetologia 2022; 65: 964 – 972
35. Tönnies T, Baumert J, Heidemann C et al.: Diabetes free life expectancy and years of life lost associated with type 2 diabetes: projected trends in Germany between 2015 and 2040. Popul Health Metr 2021; 19: 38



Risikoscreening, Risikokommunikation und Präventionsverhaltensmaßnahmen (Seite 14 – 21)
1. Ernst JB, Arens-Azevêdo U, Bitzer B, Bosy-Westphal A, de Zwaan M, Egert S, Fritsche A, Gerlach S, Hauner H, Heseker H, Koletzko B, Müller-Wieland D, Schulze M, Virmani K, Watzl B, Buyken AE für Deutsche Adipositas-Gesellschaft, Deutsche Diabetes Gesellschaft und Deutsche Gesellschaft für Ernährung. Quantitative Empfehlung zur Zuckerzufuhr in Deutschland. Bonn, 2018
2. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New Engl J Med. 2002;346(6):393-403.
3. Landgraf, R., Heinemann, L., Schleicher, E. et al. Definition, Klassifikation, Diagnostik und Differenzialdiagnostik des Diabetes mellitus: Update 2022. Diabetologie 2023;19, 44–55
4. US Preventive Services Task Force. Screening for Prediabetes and Type 2 Diabetes - US Preventive Services Task Force Recommendation Statement. JAMA 2021; 326(8): 736-743
5. American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022;45(Suppl. 1):S17–S38
6. Prütz F, Rommel A, Thom J, Du Y, Sarganas G, Starker A. Inanspruchnahme ambulanter medizinischer Leistungen in Deutschland - Ergebnisse der Studie GEDA 2019/2020-EHIS. Journal of Health Monitoring 2021; 6(3): 49-71
7. Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, McCarthy MI, Nolan JJ, Norris JM, Pearson ER, Philipson L, McElvaine AT, Cefalu WT, Rich SS, Franks PW. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020 Sep;63(9):1671-1693
8. Kengne AP, Beulens JW, Peelen LM, Moons KG, van der Schouw YT, Schulze MB, et al. Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol 2014;2(1):19-29.
9. FINDRISK – Test für Diabetesrisiko. Diabetologie 2021; 16 (Suppl 2): S427–S428
10. Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE). DIfE – DEUTSCHER DIABETES-RISIKO-TEST®. Diabetologie 2023; 19: 343-345
11. Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 2007;30(3):510-5.
12. Muhlenbruch K, Ludwig T, Jeppesen C, Joost HG, Rathmann W, Meisinger C, et al. Update of the German Diabetes Risk Score and external validation in the German MONICA/KORA study. Diabetes Res Clin Pract 2014;104(3):459-66
13. Schiborn C, Paprott R, Heidemann C, Kühn T, Fritsche A, Kaaks R, Schulze MB. German Diabetes Risk Score for the Determination of the Individual Type 2 Diabetes Risk. Dtsch Arztebl Int. 2022;119(39):651-657
14. Paprott R, Muhlenbruch K, Mensink GB, Thiele S, Schulze MB, Scheidt-Nave C, et al. Validation of the German Diabetes Risk Score among the general adult population: findings from the German Health Interview and Examination Surveys. BMJ Open Diabetes Res Care 2016;4(1):e000280
15. Muhlenbruch K, Paprott R, Joost HG, Boeing H, Heidemann C, Schulze MB. Derivation and external validation of a clinical version of the German Diabetes Risk Score (GDRS) including measures of HbA1c. BMJ Open Diabetes Res Care 2018;6(1):e000524.
16. Paprott R, Mensink GBM, Schulze MB, Thiele S, Muhlenbruch K, Scheidt-Nave C, et al. Temporal changes in predicted risk of type 2 diabetes in Germany: findings from the German Health Interview and Examination Surveys 1997-1999 and 2008-2011. BMJ open 2017;7(7):e013058
17. Gesetz zur Stärkung der Gesundheitsförderung und der Prävention vom 17. Juli 2015. Sect. Bundesgesetzblatt Jahrgang 2015 Teil I Nr.31.
18. Schempp N, Kaun L. Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2022, Berichtsjahr 2021
19. Schempp N, Römer K. Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2021, Berichtsjahr 2020
20. Bauer S, Römer K, Geiger L. Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2019, Berichtsjahr 2018
21. Bauer S, Geiger L, Niggemann R, Seidel J. Mediziner Dienst des Spitzenverbandes, Bund der Krankenkassen e.V. (MDS). Präventionsbericht 2020, Berichtsjahr 2019
22. Weinstein ND. Perceived probability, perceived severity, and health-protective behavior. Health Psychol 2000;19,65-74
23. Weinstein ND. Unrealistic optimism about future life events. J Pers Soc Psychol 1980;39,806-820
24. Heidemann C, Paprott R, Stühmann LM, Baumert J, Mühlenbruch K, Hansen S, Schiborn C, Zahn D, Gellert P, Scheid-Nave C. Perceived diabetes risk and related determinants in individuals with high actual diabetes risk: results from a nationwide population-based survey. BMJ Open Diab Res Care 2019;7:e000680
25. Schiborn C, Schulze MB. Diabetesrisikoscores: Einsatz in der Diabetesprävention. Diabetologe 2020;16,226-233



Ernährungstherapie in der Diabetologie: Aspekte 2023 – personalisierte Empfehlungen (Seite 22 – 28)
1. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015 Nov 19;163(5):1079-1094.
2. Li L, Cheng WY, Glicksberg BS, Gottesman O, Tamler R, Chen R, Bottinger EP, Dudley JT. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med. 2015 Oct 28;7(311):311ra174.
3. Gedebjerg A, Almdal TP, Berencsi K, Rungby J, Nielsen JS, Witte DR, Friborg S, Brandslund I, Vaag A, Beck-Nielsen H, Sørensen HT, Thomsen RW. Prevalence of micro- and macrovascular diabetes complications at time of type 2 diabetes diagnosis and associated clinical characteristics: A cross-sectional baseline study of 6958 patients in the Danish DD2 cohort. J Diabetes Complications. 2018 Jan;32(1):34-40.
4. Wod M, Yderstræde KB, Halekoh U, Beck-Nielsen H, Højlund K. Metabolic risk profiles in diabetes stratified according to age at onset, islet autoimmunity and fasting C-peptide. Diabetes Res Clin Pract. 2017 Dec;134:62-71.
5. Udler MS, Kim J, von Grotthuss M, Bonàs-Guarch S, Cole JB, Chiou J; Christopher D. Anderson on behalf of METASTROKE and the ISGC; Boehnke M, Laakso M, Atzmon G, Glaser B, Mercader JM, Gaulton K, Flannick J, Getz G, Florez JC. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mecha-nisms and subtypes: A soft clustering analysis. PLoS Med. 2018 Sep 21;15(9):e1002654.
6. Stidsen JV, Henriksen JE, Olsen MH, Thomsen RW, Nielsen JS, Rungby J, Ulrichsen SP, Berencsi K, Kahlert JA, Friborg SG, Brandslund I, Nielsen AA, Christiansen JS, Sørensen HT, Olesen TB, Beck-Nielsen H. Pathophysiol-ogy-based phenotyping in type 2 diabetes: A clinical classification tool. Diabetes Metab Res Rev. 2018 Jul;34(5):e3005.
7. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM, Almgren P, Wessman Y, Shaat N, Spégel P, Mulder H, Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark Å, Lahti K, Forsén T, Tuomi T, Rosengren AH, Groop L. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 May;6(5):361-369.
8. Fedotkina O, Sulaieva O, Ozgumus T, Cherviakova L, Khalimon N, Svietleisha T, Buldenko T, Ahlqvist E, Asplund O, Groop L, Nilsson PM, Lyssenko V. Novel Reclassification of Adult Diabetes Is Useful to Distinguish Stages of β-Cell Function Linked to the Risk of Vascular Complications: The DOLCE Study From Northern Ukraine. Front Genet. 2021 Jul 2;12:637945.
9. Peng X, Huang J, Zou H, Peng B, Xia S, Dong K, Sun N, Tao J, Yang Y. Roles of plasma leptin and resistin in novel subgroups of type 2 diabetes driven by cluster analysis. Lipids Health Dis. 2022 Jan 7;21(1):7.
10. Li X, Yang S, Cao C, Yan X, Zheng L, Zheng L, Da J, Tang X, Ji L, Yang X, Zhou Z. Validation of the Swedish Diabetes Re-Grouping Scheme in Adult-Onset Diabetes in China. J Clin Endocrinol Metab. 2020 Oct 1;105(10):dgaa524.
11. Zou H, Duan W, Zhang Z, Chen X, Lu P, Yu X. The circulating ANGPTL8 levels show differences among novel subgroups of adult patients with diabetes and are associated with mortality in the subsequent 5 years. Sci Rep. 2020 Jul 30;10(1):12859.
12. Zaharia OP, Strassburger K, Strom A, Bönhof GJ, Karusheva Y, Antoniou S, Bódis K, Markgraf DF, Burkart V, Müssig K, Hwang JH, Asplund O, Groop L, Ahlqvist E, Seissler J, Nawroth P, Kopf S, Schmid SM, Stumvoll M, Pfeiffer AFH, Kabisch S, Tselmin S, Häring HU, Ziegler D, Kuss O, Szendroedi J, Roden M; German Diabetes Study Group. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019 Sep;7(9):684-694.
13. Christensen DH, Nicolaisen SK, Ahlqvist E, Stidsen JV, Nielsen JS, Hojlund K, Olsen MH, García-Calzón S, Ling C, Rungby J, Brandslund I, Vestergaard P, Jessen N, Hansen T, Brøns C, Beck-Nielsen H, Sørensen HT, Thomsen RW, Vaag A. Type 2 diabetes classification: a data-driven cluster study of the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. BMJ Open Diabetes Res Care. 2022 Apr;10(2):e002731.
14. Prasad RB, Asplund O, Shukla SR, Wagh R, Kunte P, Bhat D, Parekh M, Shah M, Phatak S, Käräjämäki A, Datta A, Kakati S, Tuomi T, Saboo B, Ahlqvist E, Groop L, Yajnik CS. Subgroups of patients with young-onset type 2 diabetes in India reveal insulin deficiency as a major driver. Diabetologia. 2022 Jan;65(1):65-78.
15. Wagner R, Heni M, Tabák AG, Machann J, Schick F, Randrianarisoa E, Hrabě de Angelis M, Birkenfeld AL, Stefan N, Peter A, Häring HU, Fritsche A. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021 Jan;27(1):49-57. doi: 10.1038/s41591-020-1116-9.
16. Perreault L, Bergman BC, Playdon MC, Dalla Man C, Cobelli C, Eckel RH. Impaired fasting glucose with or without impaired glucose tolerance: progressive or parallel states of prediabetes? Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E428-35.
17. Weber MB, Ranjani H, Staimez LR, Anjana RM, Ali MK, Narayan KM, Mohan V. The Stepwise Approach to Diabetes Prevention: Results From the D-CLIP Randomized Controlled Trial. Diabetes Care. 2016 Oct;39(10):1760-7. doi: 10.2337/dc16-1241. Epub 2016 Aug 8.
18. Saito T, Watanabe M, Nishida J, Izumi T, Omura M, Takagi T, Fukunaga R, Bandai Y, Tajima N, Nakamura Y, Ito M; Zensharen Study for Prevention of Lifestyle Diseases Group. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch Intern Med. 2011 Aug 8;171(15):1352-60.
19. Hjorth MF, Astrup A, Zohar Y, Urban LE, Sayer RD, Patterson BW, Herring SJ, Klein S, Zemel BS, Foster GD, Wyatt HR, Hill JO. Personalized nutrition: pretreatment glucose metabolism determines individual long-term weight loss responsiveness in individuals with obesity on low-carbohydrate versus low-fat diet. Int J Obes (Lond). 2019 Oct;43(10):2037-2044. doi: 10.1038/s41366-018-0298-4. Epub 2018 Dec 19.
20. Hjorth MF, Bray GA, Zohar Y, Urban L, Miketinas DC, Williamson DA, Ryan DH, Rood J, Champagne CM, Sacks FM, Astrup A. Pretreatment Fasting Glucose and Insulin as Determinants of Weight Loss on Diets Vary-ing in Macronutrients and Dietary Fibres-The POUNDS LOST Study. Nutrients. 2019 Mar 11;11(3).
21. Kabisch S, Meyer NMT, Honsek C, Gerbracht C, Dambeck U, Kemper M, Osterhoff MA, Birkenfeld AL, Araf-at AM, Hjorth MF, Weickert MO, Pfeiffer AFH. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nu-trients. 2019 Oct 6;11(10).
22. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators; Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, Hanefeld M, Hoogwerf B, Laakso M, Mohan V, Shaw J, Zinman B, Holman RR. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006 Sep 23;368(9541):1096-105. doi: 10.1016/S0140-6736(06)69420-8. Erratum in: Lancet. 2006 Nov 18;368(9549):1770.
23. Stefan N, Staiger H, Wagner R, Machann J, Schick F, Häring HU, Fritsche A. A high-risk phenotype associ-ates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia. 2015 Dec;58(12):2877-84.
24. Wagner R, Heni M, Kantartzis K, Sandforth A, Machann J, Schick F, Peter A, Fritsche L, Szendrödi J, Pfeiffer AFH, Schürmann A, Blüher M, Hauner H, Seissler J, Bornstein S, Roden M, Stefan N, Birkenfeld AL, White MF, Häring HU, Fritsche A. Lower Hepatic Fat Is Associated With Improved Insulin Secretion in a High-Risk Predi-abetes Subphenotype During Lifestyle Intervention. Diabetes. 2023 Mar 1;72(3):362-366.
25. Sandforth et al. subm.
26. Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, Estruch R, Covas MI, Corella D, Arós F, Ruiz-Gutiérrez V, Ros E; PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011 Jan;34(1):14-9. doi: 10.2337/dc10-1288. Epub 2010 Oct 7.
27. Bancks MP, Chen H, Balasubramanyam A, Bertoni AG, Espeland MA, Kahn SE, Pilla S, Vaughan E, Wagenknecht LE; Look AHEAD Research Group. Type 2 Diabetes Subgroups, Risk for Complications, and Dif-ferential Effects Due to an Intensive Lifestyle Intervention. Diabetes Care. 2021 May;44(5):1203-1210. doi: 10.2337/dc20-2372.
28. Hjorth MF, Zohar Y, Hill JO, Astrup A. Personalized Dietary Management of Overweight and Obesity Based on Measures of Insulin and Glucose. Annu Rev Nutr. 2018 Aug 21;38:245-272.
29. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018 Jun 5;27(6):1212-1221.e3.
30. Kabisch S, Meyer NMT, Honsek C, Gerbracht C, Dambeck U, Kemper M, Osterhoff MA, Birkenfeld AL, Araf-at AM, Weickert MO, Pfeiffer AFH. Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cere-al Fibre in Subjects with Prediabetes-A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT). Nutri-ents. 2019 Nov 11;11(11):2726.
31. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM, Rehackova L, Adamson AJ, Sniehotta FF, Mathers JC, Ross HM, McIlven-na Y, Stefanetti R, Trenell M, Welsh P, Kean S, Ford I, McConnachie A, Sattar N, Taylor R. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lan-cet. 2018 Feb 10;391(10120):541-551.
32. Look AHEAD Research Group; Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA, Clark JM, Coday M, Curtis JM, Egan C, Evans M, Foreyt J, Foster G, Hazuda HP, Hill JO, Horton ES, Hubbard VS, Jeffery RW, Johnson KC, Kitabchi AE, Knowler WC, Kriska A, Lang W, Lewis CE, Montez MG, Nathan DM, Neiberg RH, Patricio J, Peters A, Pi-Sunyer X, Pownall H, Redmon B, Regensteiner J, Rejeski J, Ribisl PM, Safford M, Stewart K, Trence D, Wadden TA, Wing RR, Yanovski SZ. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016 Nov;4(11):913-921.
33. Liu M, Huang R, Xu L, Zhang S, Zhong X, Chen X, Lin Y, Xiong Z, Wang L, Liao X, Zhuang X. Cardiovascular effects of intensive lifestyle intervention in adults with overweight/obesity and type 2 diabetes according to body weight time in range. EClinicalMedicine. 2022 May 27;49:101451.
34. Espeland MA, Carmichael O, Hayden K, Neiberg RH, Newman AB, Keller JN, Wadden TA, Rapp SR, Hill JO, Horton ES, Johnson KC, Wagenknecht L, Wing RR; Action for Health In Diabetes Brain Magnetic Resonance Imaging (Look AHEAD Brain) and Action for Health Movement and Memory Ancillary Study Research Groups. Long-term Impact of Weight Loss Intervention on Changes in Cognitive Function: Exploratory Analyses from the Action for Health in Diabetes Randomized Controlled Clinical Trial. J Gerontol A Biol Sci Med Sci. 2018 Mar 14;73(4):484-491.
35. Johnson KC, Bray GA, Cheskin LJ, Clark JM, Egan CM, Foreyt JP, Garcia KR, Glasser S, Greenway FL, Gregg EW, Hazuda HP, Hergenroeder A, Hill JO, Horton ES, Jakicic JM, Jeffery RW, Kahn SE, Knowler WC, Lewis CE, Miller M, Montez MG, Nathan DM, Patricio JL, Peters AL, Pi-Sunyer X, Pownall HJ, Reboussin D, Redmon JB, Steinberg H, Wadden TA, Wagenknecht LE, Wing RR, Womack CR, Yanovski SZ, Zhang P, Schwartz AV; Look AHEAD Study Group. The Effect of Intentional Weight Loss on Fracture Risk in Persons With Diabetes: Results From the Look AHEAD Randomized Clinical Trial. J Bone Miner Res. 2017 Nov;32(11):2278-2287.
36. Hayden KM, Baker LD, Bray G, Carvajal R, Demos-McDermott K, Hergenroeder AL, Hill JO, Horton E, Jakicic JM, Johnson KC, Neiberg RH, Rapp SR, Wadden TA, Miller ME. Long-term impact of intensive lifestyle inter-vention on cognitive function assessed with the National Institutes of Health Toolbox: The Look AHEAD study. Alzheimers Dement (Amst). 2017 Oct 9;10:41-48.
37. Raparelli V, Romiti GF, Spugnardi V, Borgi M, Cangemi R, Basili S, Proietti M; The Eva Collaborative Group. Gender-Related Determinants of Adherence to the Mediterranean Diet in Adults with Ischemic Heart Dis-ease. Nutrients. 2020 Mar 13;12(3):759.
38. Predieri S, Sinesio F, Monteleone E, Spinelli S, Cianciabella M, Daniele GM, Dinnella C, Gasperi F, Endrizzi I, Torri L, Gallina Toschi T, Bendini A, Pagliarini E, Cattaneo C, Di Monaco R, Vitaglione P, Condelli N, Laureati M. Gender, Age, Geographical Area, Food Neophobia and Their Relationships with the Adherence to the Medi-terranean Diet: New Insights from a Large Population Cross-Sectional Study. Nutrients. 2020 Jun 15;12(6):1778.
39. Szymczyk I, Wojtyna E, Lukas W, Kępa J, Pawlikowska T. How does gender influence the recognition of cardiovascular risk and adherence to self-care recommendations?: A study in Polish primary care. BMC Fam Pract. 2013 Nov 1;14:165.
40. Perreault L, Ma Y, Dagogo-Jack S, Horton E, Marrero D, Crandall J, Barrett-Connor E; Diabetes Prevention Program. Sex differences in diabetes risk and the effect of intensive lifestyle modification in the Diabetes Prevention Program. Diabetes Care. 2008 Jul;31(7):1416-21. doi: 10.2337/dc07-2390
41. Perreault L, Pan Q, Schroeder EB, Kalyani RR, Bray GA, Dagogo-Jack S, White NH, Goldberg RB, Kahn SE, Knowler WC, Mathioudakis N, Dabelea D; Diabetes Prevention Program Research Group. Regression From Prediabetes to Normal Glucose Regulation and Prevalence of Microvascular Disease in the Diabetes Preven-tion Program Outcomes Study (DPPOS). Diabetes Care. 2019 Sep;42(9):1809-1815.
42. Almoosawi S, Vingeliene S, Gachon F, Voortman T, Palla L, Johnston JD, Van Dam RM, Darimont C, Kara-gounis LG. Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health. Adv Nutr. 2019 Jan 1;10(1):30-42.
43. Mazri FH, Manaf ZA, Shahar S, Mat Ludin AF. The Association between Chronotype and Dietary Pattern among Adults: A Scoping Review. Int J Environ Res Public Health. 2019 Dec 20;17(1):68.
44. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M. Epidemiology of the human circadian clock. Sleep Med Rev. 2007 Dec;11(6):429-38.
45. Wittenbrink N, Ananthasubramaniam B, Münch M, Koller B, Maier B, Weschke C, Bes F, de Zeeuw J, Nowozin C, Wahnschaffe A, Wisniewski S, Zaleska M, Bartok O, Ashwal-Fluss R, Lammert H, Herzel H, Hum-mel M, Kadener S, Kunz D, Kramer A. High-accuracy determination of internal circadian time from a single blood sample. J Clin Invest. 2018 Aug 31;128(9):3826-3839.



Optionen zum Unterstützen der Bewegungsinitiierung für Menschen mit Diabetes (Seite 29 – 35)
1. Breuer C, Feiler S, Rossi L: Auswirkungen der COVID-19-Pandemie auf dieSportvereine in Deutschland; Ergebnisse der COVID-Zusatzbefragung im Rahmen der 8. Welledes Sportentwicklungsberichts; S. 53, 2021
2. Thieme L, Wallrodt S: On membership development in organised sport and the assessment of pandemic-related consequences Everything different due to Corona?; German Journal of Exercise and Sport Research volume 52, pages 179 -185, 2022
3. Hollasch K, Ludiwg S, Der deutsche Fitnessmarkt – Studie 2023; Deloitte; S. 12, 2023
4. Stuij M: Physical activity, that’s a tricky subject; Experiences of health care professionals with physical activity in type 2 diabetes; BMC Health Services Research 2018; 18: 297; https://doi.org/10.1186/s12913-018-3102-1
5. Colberg SR, Sigal RJ, Yardley JE, et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065-2079. doi:10.2337/DC16-1728
6. Riddell MC, Gallen IW, Smart CE, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377-390. doi:10.1016/S2213-8587(17)30014-1
7. Moser O, Riddell MC, Eckstein ML, et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society f. Diabetologia. 2020;63(12):2501-2520. doi:10.1007/s00125-020-05263-9
8. Hamasaki H. Daily physical activity and type 2 diabetes: A review. World J Diabetes. 2016;7(12):243. doi:10.4239/WJD.V7.I12.243
9. Qiu SH, Sun ZL, Cai X, Liu L, Yang B. Improving Patients’ Adherence to Physical Activity in Diabetes Mellitus: A Review. Diabetes Metab J. 2012;36(1):1. doi:10.4093/DMJ.2012.36.1.1
10. Liu Y, Ye W, Chen Q, Zhang Y, Kuo CH, Korivi M. Resistance Exercise Intensity is Correlated with Attenuation of HbA1c and Insulin in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2019;16(1). doi:10.3390/IJERPH16010140
11. Pedrosa A, Furtado G, Paes De Barros M, et al. The Impact of Moderate-to-High-Intensity Exercise Protocols on Glycated Hemoglobin Levels in Type 2 Diabetes Patients. Diabetol 2023, Vol 4, Pages 11-18. 2022;4(1):11-18. doi:10.3390/DIABETOLOGY4010002
12. Moser O, Eckstein ML, West DJ, Goswami N, Sourij H, Hofmann P. Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy. Curr Pharm Des. 2020;26(9):946-957. doi:10.2174/1381612826666200108113002
13. Hébert ET, Caughy MO, Shuval K: Primary care providers’ perceptions of physical activity counselling in a clinical setting: a systematic review Br J Sports Med. 2012; 46: 625-631
14. Valenta V et al.: Risikokommunikation und Inanspruchnahme von Präventionsangeboten des Diabetes mellitus Typ 2 mithilfe des Deutschen Diabetes-Risiko-Tests. Diabetologie 2019, https://doi.org/10.1055/a-0829-0273
15. Di Loreto C: Make your diabetic Patients walk; Diabetes Care 2005; 28: 1295-1302
16. Nationale Versorgungsleitlinie Typ-2-Diabetes, Teilpublikation der Langfassung, 2. Auflage, Version 1, S.12, 2021
17. Stacey D, Légaré F, Lewis K, et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev 2017; 4(4):CD001431. DOI: 10.1002/14651858.CD001431.pub5. http://www.ncbi.nlm.nih.gov/pubmed/28402085.
18. Dobler CC, Sanchez M, Gionfriddo MR, et al. Impact of decision aids used during clinical encounters on clinician outcomes and consultation length: A systematic review. BMJ quality & safety 2019; 28(6):499–510. DOI: 10.1136/bmjqs-2018- 008022. http://www.ncbi.nlm.nih.gov/pubmed/30301874.20.
19. Gal JJ, Li Z, Willi SM, Riddell MC. Association between high levels of physical activity and improved glucose control on active days in youth with type 1 diabetes. Pediatr Diabetes. 2022;23(7):1057-1063. doi:10.1111/pedi.13391
20. Woodhead G, Sivaramakrishnan D, Baker G. Promoting physical activity to patients: a scoping review of the perceptions of doctors in the United Kingdom. Syst Rev. 2023 Jun 24;12(1):104. doi: 10.1186/s13643-023-02245-x. PMID: 37355661; PMCID: PMC10290366.
21. Collado-Mateo D, Lavín-Pérez AM, Peñacoba C, Del Coso J, Leyton-Román M, Luque-Casado A, Gasque P, Fernández-Del-Olmo MÁ, Amado-Alonso D. Key Factors Associated with Adherence to Physical Exercise in Patients with Chronic Diseases and Older Adults: An Umbrella Review. Int J Environ Res Public Health. 2021 Feb 19;18(4):2023. doi: 10.3390/ijerph18042023. PMID: 33669679; PMCID: PMC7922504.
22. Larsson K, Hagströmer M, Rossen J, Johansson UB, Norman Å. Health care professionals‘ experiences of supporting persons with metabolic risk factors to increase their physical activity level - a qualitative study in primary care. Scand J Prim Health Care. 2023 Jun;41(2):116-131. doi: 10.1080/02813432.2023.2187668. Epub 2023 Mar 16. PMID: 36927270; PMCID: PMC10193889.
23. Positionspapier zum Bewegungsberater der Österreichischen Diabetes Gesellschaft (http://www.oedg.org/pdf/1410_Positionspapier_Bewegungsberater.pdf)
24. Kautzky-Willer A. Recruitment of patients with type 2 diabetes for target group specific exercise programs at an Outpatient Department of a Medical University: A factor analysis. Wien Klin Wochenschr. 2011 Jun;123(11-12):350-3. doi: 10.1007/s00508-011-1576-5. Epub 2011 May 5. PMID: 21538035.
25. S. Kress, M. Behrens, P. Borchert . Eckpfeiler einer erfolgreichen Bewegungstherapie bei Typ-2-Diabetes in der Praxis . internistische praxis 2023; 66 : 406–414
26. Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57(9):1789-1797. doi:10.1007/S00125-014-3303-Z



Adipositas: Wie steht es um die Anerkennung der chronischen Erkrankung? (Seite 36 – 40)
1. Mensink, G. B. M., Schienkiewitz, A., Haftenberger, M., Lampert, T., Ziese, T., & Scheidt-Nave, C. (2013). Übergewicht und Adipositas in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz, 56(5–6), 786–794. https://doi.org/10.1007/s00103-012-1656-3
2. Schienkiewitz A, Brettschneider AK, Damerow S, Schaffrath Rosario A (2018) Übergewicht und Adipositas im Kindes- und Jugendalter in Deutschland – Querschnittergebnisse aus KiGGS Welle 2 und Trends. Journal of Health Monitoring 3(1):16–23.
3. Vogel, M., Geserick, M., Gausche, R. et al. Age- and weight group-specific weight gain patterns in children and adolescents during the 15 years before and during the COVID-19 pandemic. Int J Obes 46, 144–152 (2022).
4. Galler A, Röbl M, Prinz N, Dannemann A, Gellhaus I, Kapellen T, Linke S, Schauerte G, Stein R, Weghuber D, Weihrauch-Blüher S, Wiegand S, Holl R. Weight Development in Children and Adolescents with Obesity During the COVID-19 Pandemic. Dtsch Arztebl Int. 2022 Apr 29;119(17):302-303. doi: 10.3238/arztebl.m2022.0155. PMID: 35912532.
5. DAK-Gesundheit. Kinder- und Jugendreport 2021: Gesundheitsversorgung von Kindern und Jugendlichen in Deutschland. Schwerpunkt: Suchterkrankungen. November 2021.
6. DAG, EKFZ für Ernährungsmedizin. Wie Corona das Gesundheitsverhalten von Kindern und Jugendlichen verändert hat. Ergebnisse einer repräsentativen Elternbefragung (2021): https://adipositas-gesellschaft.de/forsa-umfrage-zeigt-folgen-der-corona-krise-fuer-kinder-gewichtszunahme-weniger-bewegung-mehr-suesswaren-jedes-sechste-kind-ist-dicker-geworden/
7. WHO-Regionalbüro für Europa. New WHO report: Europe can reverse ist obesity "epidemic" (2022): https://www.who.int/europe/news/item/03-05-2022-new-who-report--europe-can-reverse-its-obesity--epidemic
8. Prof. Dr. h. c. Herbert Rebscher, DAK-Gesundheit (2016). Versorgungsreport Adipositas - Chancen für mehr Gesundheit. Beiträge zur Gesundheitsökonomie und Versorgungsforschung (Band 15).
9. Vgl. Josef Hecken, unparteiischer Vorsitzender des Gemeinsamen Bundesausschusses (G-BA). Disease-Management Programm Adipositas: der Auftrag an den G-BA. Erschienen in Gesundheitsbericht Diabetes 2022. https://www.ddg.info/fileadmin/user_upload/Gesundheitsbericht_2022_final.pdf#page=184
10. Bundessozialgericht Urteil vom 22.06.2022, B 1 KR 19/21 R; SG Kassel, Urteil vom 18.02.2021 - S 8 KR 180/18;
11. https://www.aerzteblatt.de/nachrichten/135253/Gutachten-Kassen-behindern-operative-Adipositasbehandlungen
12. https://www.aerzteblatt.de/archiv/202428/Adipositas-Chirurgie-Die-Nachsorge-wird-zum-Tsunami
13. Gesetzentwurf der Bundesregierung: Entwurf eines Gesetzes zur Weiterentwicklung der Gesundheitsversorgung (Gesundheitsversorgungsweiterentwicklungsgesetz – GVWG). Drucksache 19/26822. Stand: 19.02.2021. Vom Deutschen Bundestag beschlossen am 11.06.2021. Zum Vorgang: https://dip.bundestag.de/vorgang/.../272225
14. https://www.aerztezeitung.de/Politik/G-BA-will-im-Herbst-Anforderungen-fuer-DMP-Adipositas-festklopfen-440522.html
15. https://www.aerzteblatt.de/archiv/219819/Disease-Management-Programme-Zwischen-Papiertiger-und-realen-Versorgungsangeboten
16. Bundesamt für Soziale Sicherung (BAS). DMP – Grundlegende Informationen. Stand: Januar 2023. Abgerufen am 24.07.2023: https://www.bundesamtsozialesicherung.de/de/themen/disease-management-programme/dmp-grundlegende-informationen/



Immunologie des Typ-1-Diabetes: ein Update (Seite 41 – 46)
1. FDA press release November 17, 2022; FDA Approves First Drug That Can Delay Onset of Type 1 Diabetes; accessed June 20, 2023; https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-can-delay-onset-type-1-diabetes
2. Herold, K.C., et al., An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med, 2019. 381(7): p. 603-613.
3. Sims, E.K., et al., Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med, 2021. 13(583).
4. Ziegler, A.G., et al., Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA, 2020. 323(4): p. 339-351.
5. Scherm, M.G., et al., miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nat Commun, 2019. 10(1): p. 5697.
6. Serr, I., et al., miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A, 2016. 113(43): p. E6659-E6668.
7. Serr, I., et al., A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Sci Transl Med, 2018. 10(422).
8. Fox, R.J., et al., A double-blind, randomized, placebo-controlled phase 2 trial evaluating the selective dihydroorotate dehydrogenase inhibitor vidofludimus calcium in relapsing-remitting multiple sclerosis. Ann Clin Transl Neurol, 2022. 9(7): p. 977-987.



Biologische Betazellersatztherapie für Menschen mit Diabetes mellitus Typ 1: aktueller Stand (Seite 47 – 52)
1. Kelly, W.D., Lillehei, R.C., Merkel, F.K., Idezuki, Y., and Goetz, F.C. (1967). Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 61, 827–837.
2. Najarian, J.S., Sutherland, D.E., Matas, A.J., Steffes, M.W., Simmons, R.L., and Goetz, F.C. (1977). Human islet transplantation: a preliminary report. Transplant. Proc. 9, 233–236.
3. Najarian, J.S., Sutherland, D.E., Matas, A.J., and Goetz, F.C. (1979). Human islet autotransplantation following pancreatectomy. Transplant. Proc. 11, 336–340.
4. Ramzy, A., Thompson, D.M., Ward-Hartstonge, K.A., Ivison, S., Cook, L., Garcia, R.V., Loyal, J., Kim, P.T.W., Warnock, G.L., Levings, M.K., and Kieffer, T.J. (2021). Implanted pluripotent stem cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 28
5. Shapiro, A.M.J., Thompson, D., Donner, T.W., Bellin, M.D., Hsueh, W., Pettus, J., Wilensky, J., Daniels, M., Wang, R.M., Brandon, E.P., et al. (2021). Insulin expression and circulating C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in a macroencapsulation device. Cell Reports Medicine 3
6. Steffes, M.W., Sibley, S., Jackson, M., Thomas, W. (2003). Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 26, 832-836.
7. D’Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman, M.A., Kroon, E., Carpenter, M.K., and Baetge, E.E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401.
8. Kroon, E., Martinson, L.A., Kadoya, K., Bang, A.G.,Kelly, O.G., Eliazer, S., Young, H., Richardson, M., Smart, N.G., Cunningham, J., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452.
9. Jeyam, A., Colhoun, H., McGurnaghan, S., Blackbourn, L., McDonald, T.J., Palmer, C.N.A., McKnight, J.A., Strachan, M.W.J., Patrick, A.W., Chalmers, J., et al.; SDRNT1BIO Investigators (2021). Clinical Impact of Residual C-Peptide Secretion in Type 1 Diabetes on Glycemia and Microvascular Complications. Diabetes Care 44, 390–398.
10. Pagliuca, F.W., Millman, J.R., Gurtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D., and Melton, D.A. (2014). Generation of functional human pancreatic b cells in vitro. Cell 159, 428–439.



Inzidenz des Typ-1-Diabetes und Prävalenz der Ketoazidose bei Manifestation (Seite 53 – 62)
1. Liu F, Long X, Zhang B, et al.: ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol 2020;18:2128-2130.e2122
2. Rotulo GA, Palma P: Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatr Res 2023:1-9
3. Bombaci B, Passanisi S, Sorrenti L, et al.: Examining the associations between COVID-19 infection and pediatric type 1 diabetes. Expert Rev Clin Immunol 2023;
4. DiMeglio LA, Evans-Molina C, Oram RA: Type 1 diabetes. Lancet (London, England) 2018;391:2449-2462
5. Kamrath C, Eckert AJ, Holl RW, et al.: Impact of the COVID-19 Pandemic on Children and Adolescents with New-Onset Type 1 Diabetes. Pediatric Diabetes 2023;2023:7660985
6. D‘Souza D EJ, Pechlivanoglou P, Uleryk EM, Cohen E, Shulman R: Incidence of diabetes in children during the COVID-19 pandemic: A Systematic Review and Meta-analysis. . JAMA Network Open 2023;6:e2319038
7. McKeigue PM, McGurnaghan S, Blackbourn L, et al.: Relation of Incident Type 1 Diabetes to Recent COVID-19 Infection: Cohort Study Using e-Health Record Linkage in Scotland. Diabetes Care 2023;46:921-928
8. Baechle C, Eckert A, Kamrath C, et al.: Incidence and presentation of new-onset type 1 diabetes in children and adolescents from Germany during the COVID-19 pandemic 2020 and 2021: Current data from the DPV Registry. Diabetes Res Clin Pract 2023;197:110559
9. Kamrath C, Rosenbauer J, Eckert AJ, et al.: Incidence of Type 1 Diabetes in Children and Adolescents During the COVID-19 Pandemic in Germany: Results From the DPV Registry. Diabetes Care 2022;
10. van den Boom L, Kostev K, Kuss O, et al.: Type 1 diabetes incidence in children and adolescents during the COVID-19 pandemic in Germany. Diabetes Research and Clinical Practice 2022;193:110146
11. Weiss A, Donnachie E, Beyerlein A, et al.: Type 1 Diabetes Incidence and Risk in Children With a Diagnosis of COVID-19. JAMA 2023;329:2089-2091
12. Knip M, Parviainen A, Turtinen M, et al.: SARS-CoV-2 and type 1 diabetes in children in Finland: an observational study. Lancet Diabetes Endocrinol 2023;11:251-260
13. Reschke F, Lanzinger S, Herczeg V, et al.: The COVID-19 Pandemic Affects Seasonality, With Increasing Cases of New-Onset Type 1 Diabetes in Children, From the Worldwide SWEET Registry. Diabetes Care 2022;45:2594-2601
14. Wolf RM, Noor N, Izquierdo R, et al.: Increase in newly diagnosed type 1 diabetes in youth during the COVID-19 pandemic in the United States: A multi-center analysis. Pediatr Diabetes 2022;23:433-438
15. Rewers M, Bonifacio E, Ewald D, et al.: SARS-CoV-2 Infections and Presymptomatic Type 1 Diabetes Autoimmunity in Children and Adolescents From Colorado, USA, and Bavaria, Germany. JAMA 2022;328:1252-1255
16. Mariet AS, Petit J-M, Benzenine E, et al.: Incidence of new-onset type 1 diabetes during Covid-19 pandemic: A French nationwide population-based study. Diabetes & Metabolism 2023;49:101425
17. Zareini B, Sorensen KK, Eiken PA, et al.: Association of Coronavirus Disease 2019 and Development of Type 1 Diabetes: A Danish Nationwide Register Study. Diabetes Care 2023;
18. Lai H, Yang M, Sun M, et al.: Risk of incident diabetes after COVID-19 infection: A systematic review and meta-analysis. Metabolism 2022;137:155330
19. Rahmati M, Yon DK, Lee SW, et al.: New-onset type 1 diabetes in children and adolescents as postacute sequelae of SARS-CoV-2 infection: A systematic review and meta-analysis of cohort studies. J Med Virol 2023;95:e28833
20. Barrett CE, Koyama AK, Alvarez P, et al.: Risk for Newly Diagnosed Diabetes >30 Days After SARS-CoV-2 Infection Among Persons Aged <18 Years - United States, March 1, 2020-June 28, 2021. MMWR Morb Mortal Wkly Rep 2022;71:59-65
21. Kendall EK, Olaker VR, Kaelber DC, et al.: Association of SARS-CoV-2 Infection With New-Onset Type 1 Diabetes Among Pediatric Patients From 2020 to 2021. JAMA Netw Open 2022;5:e2233014
22. Qeadan F, Tingey B, Egbert J, et al.: The associations between COVID-19 diagnosis, type 1 diabetes, and the risk of diabetic ketoacidosis: A nationwide cohort from the US using the Cerner Real-World Data. PLoS One 2022;17:e0266809
23. Gulseth HL, Ruiz PLD, Størdal K, et al.: SARS-CoV-2 infection and subsequent risk of type 1 diabetes in 1.2 million children. Diabetologia 2022;65:S123
24. Noorzae R, Junker TG, Hviid AP, et al.: Risk of Type 1 Diabetes in Children Is Not Increased After SARS-CoV-2 Infection: A Nationwide Prospective Study in Denmark. Diabetes Care 2023;46:1261-1264
25. Kompaniyets L, Bull-Otterson L, Boehmer TK, et al.: Post-COVID-19 Symptoms and Conditions Among Children and Adolescents - United States, March 1, 2020-January 31, 2022. MMWR Morb Mortal Wkly Rep 2022;71:993-999
26. Rezel-Potts E, Douiri A, Sun X, et al.: Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK. PLoS Med 2022;19:e1004052
27. Bull-Otterson L, Baca S, Saydah S, et al.: Post-COVID Conditions Among Adult COVID-19 Survivors Aged 18–64 and ≥65 Years –– United States. March 2002–November 2021 MMWR Morb Mortal Wkly Rep 2022;71:713–717
28. Alfayez OM, Aldmasi KS, Alruwais NH, et al.: Incidence of Diabetic Ketoacidosis Among Pediatrics With Type 1 Diabetes Prior to and During COVID-19 Pandemic: A Meta-Analysis of Observational Studies. Front Endocrinol (Lausanne) 2022;13:856958
29. Birkebaek NH, Kamrath C, Grimsmann JM, et al.: Impact of the COVID-19 pandemic on long-term trends in the prevalence of diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes: an international multicentre study based on data from 13 national diabetes registries. Lancet Diabetes Endocrinol 2022;10:786-794
30. Delpeut J, Giani E, Louet D, et al.: Variable incidence of ketoacidosis in youth with type 1 diabetes onset during COVID-19 pandemic peaks in France. Diabetes Metab 2022;48:101322
31. Mariet AS, Petit JM, Benzenine E, et al.: Incidence of new-onset type 1 diabetes during Covid-19 pandemic: A French nationwide population-based study. Diabetes Metab 2023;49:101425



Entwicklung von Übergewicht und Adipositas in Deutschland – neuere Studienergebnisse (Seite 63 – 68)
1. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, Song X, Ren Y, Shan P-F: Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific Reports 2020, 10(1):14790.
2. Hoebel J, Waldhauer J, Blume M, Schienkiewitz A: Sozioökonomischer Status, Übergewicht und Adipositas im Kindes- und Jugendalter. Dtsch Arztebl International 2022, 119(49):839-845.
3. Hoebel J, Kuntz B, Kroll LE, Schienkiewitz A, Finger JD, Lange C, Lampert T: Socioeconomic Inequalities in the Rise of Adult Obesity: A Time-Trend Analysis of National Examination Data from Germany, 1990–2011. Obesity Facts 2019, 12(3):344-356.
4. Kühnelt C, Starker A, Varnaccia G, Schienkiewitz A: Schuleingangsuntersuchungen als kleinräumige Datenquelle für ein Monitoring der Kindergesundheit am Beispiel Adipositas. Journal of Health Monitoring 2023, 8(2):6-20.
5. von Philipsborn P, Hauner H, Wabitsch M: Gewichtsentwicklung bei Kindern, Jugendlichen und Erwachsenen in der COVID-19-Pandemie. In: Deutscher Gesundheitsbericht Diabetes 2023. edn. Berlin; 2023: 61-66.
6. Vogel M, Geserick M, Gausche R, Beger C, Poulain T, Meigen C, Körner A, Keller E, Kiess W, Pfäffle R: Age- and weight group-specific weight gain patterns in children and adolescents during the 15 years before and during the COVID-19 pandemic. International Journal of Obesity 2022, 46(1):144-152.
7. Galler A, Röbl M, Prinz N, Dannemann A, Gellhaus I, Kapellen T, Linke S, Schauerte G, Stein R, Weghuber D et al: Weight development in children and adolescents with obesity during the COVID-19 pandemic. Dtsch Arztebl International 2022, 119(17):302-303.
8. Vogel M, Geserick M, Gausche R, Beger C, Poulain T, Meigen C, Körner A, Sobek C, Keller E, Pfäffle R et al: Gewichtszunahme bei Kindern und Jugendlichen während der Covid-19 Pandemie. Adipositas - Ursachen, Folgeerkrankungen, Therapie 2021, 15(04):206-211.
9. Übergewicht und Adipositas [www.rki.de/DE/Content/Gesundheitsmonitoring/Themen/Uebergewicht_Adipositas/Uebergewicht_Adipositas_node.html]
10. Schienkiewitz A, Kuhnert R, Blume M, Mensink GBM: Übergewicht und Adipositas bei Erwachsenen in Deutschland – Ergebnisse der Studie GEDA 2019/2020-EHIS. Journal of Health Monitoring 2022, 3.
11. NCD-RisC: Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 2017, 390(10113):2627-2642.
12. Schienkiewitz A, Damerow S, Richter A, Mensink GB: Wie hat sich das Körpergewicht seit Beginn der COVID-19-Pandemie verändert? Journal of Health Monitoring 2022, 7(4).
13. Lebensstil und Ernährung von Erwachsenen in Corona-Zeiten [https://www.ekfz.tum.de/fileadmin/PDF/PPT__EKFZ_und_Forsa_2_Final.pdf]



Virtuelle Medizin in der Kinderdiabetologie – heute und morgen (Seite 69 – 74)
1. Lewit EM, Figg LE, Addala A, et al. Project ECHO Diabetes Cost Modeling to Support the Replication and Expansion of Tele-mentoring Programs in Non-research Settings. Diabetes Ther 2023;14(3):509-518, doi:10.1007/s13300-022-01364-3
2. Addala A, Filipp SL, Figg LE, et al. Tele-education model for primary care providers to advance diabetes equity: Findings from Project ECHO Diabetes. Front Endocrinol (Lausanne) 2022;13(1066521, doi:10.3389/fendo.2022.1066521
3. Nimri R, Battelino T, Laffel LM, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med 2020;26(9):1380-1384, doi:10.1038/s41591-020-1045-7



Patientenschulung per Video – Quo vadis? (Seite 75 – 80)
1. Zitiert nach: Jörgens, V. (2022). Die Geschichte der Diabetesforschung. Kirchheim Verlag
2. Modulare Überarbeitung der Nationalen VersorgungsLeitlinie Typ-2-Diabetes. Teilpublikation der Langfassung. Abgerufen am 17.07.2023: https://register.awmf.org/assets/guidelines/nvl-001l_S3_Typ_2_Diabetes_2021-03.pdf
3. Gemeinsame Stellungnahme DDG, VDBD, BVND, DGKED zum Beschlussentwurf über eine Änderung der DMP-Anforderungen-Richtlinie (DMP A-RL): Änderung von §4. https://www.ddg.info/politik/stellungnahmen/gemeinsame-stellungnahme-zum-beschlussentwurf-ueber-eine-aenderung-der-dmp-anforderungen-richtlinie-dmp-a-rl-aenderung-von-4
4. Abfrage Chat GPT 3.5 "Definition Patientenschulung per Video" am 28.06.2023
5. Beschluss des Gemeinsamer Bundesausschusses über die 19. Änderung der DMP-Anforderungen-Richtlinie (DMP-A-RL): Ausnahmeregelungen für Schulungen und Dokumentationen aufgrund der COVID-19-Pandemie. 27. März 2020.
6. Kassenärztliche Bundesvereinigung. Abgerufen am 17.07.2023: https://www.kbv.de/media/sp/Praxisinformation_Videosprechstunde.pdf
7. Reschke, F., Galuschka, L., Landsberg, S., Weiner, C., Guntermann, C., Sadeghian, E., Lange, K., Danne, T. (2022). "Successful telehealth transformation of a pediatric outpatient obesity teaching program due to the COVID-19 pandemic – the "Video KiCK" program". Journal of Pediatric Endocrinology and Metabolism, vol. 35, no. 6, 2022, pp. 803-812. https://doi.org/10.1515/jpem-2022-0104
8. VDBD-Positionspapier Digitalisierung im Gesundheitswesen und Nutzung digitaler Gesundheitsdaten. Berlin, März 2023. https://www.vdbd.de/fileadmin/portal/redaktion/Positionspapiere/230228_Positionspapier_Nutzung_digitaler_Gesundheitsdaten_F2.pdf



Diabetes und Augenerkrankungen (Seite 81 – 89)
1. Green JB, Bethel MA, Armstrong PW et al.: Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373: 232-242
2. Hammes HP, Welp R, Kempe HP et al.: Risk factors for retinopathy and DME in type 2 diabetes – results from the German/Austrian DPV database. PloS One 2015; 10: e0132492
3. Leasher JL, Bourne RR, Flaxman SR et al.: Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 2016; 39: 1643-1649
4. Marso SP, Bain SC, Consoli A et al.: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375: 1834-1844
5. Ponto KA, Koenig J, Peto T et al.: Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 2016; 59: 1913-1919
6. Schorr SG, Hammes HP, Muller UA et al.: The prevention and treatment of retinal complications in diabetes. Dtsch Arztebl Int 2016; 113: 816-823
7. Goh JK, Cheung CY, Sim SS et al.: Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol 2016; 10: 282–294
8. Gulshan V, Peng L, Coram M et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 316: 2402–2410
9. Heydon P, Egan C, Bolter L et al.: Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol 2021; 105: 723-728. Epub 2020 Jun 30. doi: 10.1136/bjophthalmol-2020-316594
10. Baker CW, Glassman AR, Beaulieu WT et al.: Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA 2019; 321: 1880-1894
11. Deutsche Ophthalmologische Gesellschaft (DOG), Retinologische Gesellschaft (RG), Berufsverband der Augenärzte Deutschlands (BVA): Stellungnahme der DOG, der RG und des BVA zur Therapie des diabetischen Makulaödems, Stand August 2019. Klin Monatsbl Augenheilkd 2020; 237: 325–352
12. Gross JG, Glassman AR, Liu D et al.: Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol 2018; 136: 1138-1148
13. Lang GE, Stahl A, Voegeler J et al.: Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy – the PRIDE study. Acta Ophthalmol 2020: 98: e530–e539. Epub: 2019 Dec 6. doi: 10.1111/aos.14312
14. Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft, Berufsverband der Augenärzte Deutschlands: Ergänzende Stellungnahme der DOG, der RG und des BVA zur Therapie der proliferativen diabetischen Retinopathie. Ophthalmologe 2020; 117: 755-759
15. Lemmen KD, Agostini H, Bertram B et al.: Stadieneinteilung und Therapie der diabetischen Retinopathie und Makulopathie – eine Übersicht. Teil 1. Z Prakt Augenheilkd 2021; 42: 389–398
16. Lemmen KD, Agostini H, Bertram B et al.: Stadieneinteilung und Therapie der diabetischen Retinopathie und Makulopathie – eine Übersicht. Teil 2. Z Prakt Augenheilkd 2021; 42: 457-467



Diabetes und Niere: Update 2024 (Seite 90 – 95)
1. Rossing P, Caramori ML, Chan JCN, et al (2022) KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 102(5):S1–S127. https://doi.org/10.1016/j.kint.2022.06.008
2. The EMPA-KIDNEY Collaborative Group (2023) Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 388(2):117–127. https://doi.org/10.1056/NEJMoa2204233
3. Agarwal R, Filippatos G, Pitt B, et al (2022) Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 43(6):474–484. https://doi.org/10.1093/eurheartj/ehab777
4. Heerspink HJ, Cherney DZ, Groop P-H, et al (2023) People with type 1 diabetes and chronic kidney disease urgently need new therapies: a call for action. Lancet Diabetes Endocrinol S2213858723001687. https://doi.org/10.1016/S2213-8587(23)00168-7
5. de Boer IH, et al. (2023) Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care. https://doi:10.2337/dci22-0027



Diabetes und Nervenerkrankungen (Seite 96 – 102)
1. Ziegler D, Keller J, Maier C, Pannek J. DDG-Praxisempfehlung. Diabetische Neuropathie. Diabetologie 2022; 17 (Suppl 2): 339–353.
2. Bongaerts B, Rathmann W, Heier M et al. Older Subjects with Diabetes and Prediabetes are Frequently Unaware of Having Distal Sensorimotor Polyneuropathy: The KORA F4 Study. Diabetes Care 2013; 36: 1141–1146. DOI: 10.2337/dc12-0744
3. Bönhof G, Herder C, Strom A, et al. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocrine Reviews 2019; 40: 153–192.
4. Smith AG, Russell J, Feldman EL et al. Lifestyle Intervention for Pre-Diabetic Neuropathy. Diabetes Care 2006; 29: 1294–1299.
5. Mehra S, Tavakoli M, Kallinikos PA et al. Corneal Confocal Microscopy Detects Early Nerve Regeneration After Pancreas Transplantation in Patients with Type 1 Diabetes. Diabetes Care 2007; 30: 2608–2612
6. Ziegler D, Tankova T, Spallone V et al. Screening, Diagnosis and Management of Diabetic Sensorimotor Polyneuropathy in Clinical Practice: International Expert Consensus Recommendations. Diabetes Res Clin Pract 2022;186:109063.
7. Stirban A. Diabetische Neuropathie. Aktuelle Empfehlungen zur Diagnostik und Therapie. Doctors Today: 12.2021
8. Martin CL, Albers JW, Pop-Busui R, et al. Neuropathy and Related Findings in the Diabetes Control and Complications Trial / Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care 2014; 37: 31–38.
9. Look AHEAD Research Group. Effects of a Long-Term Lifestyle Modification Programme on Peripheral Neuropathy in Overweight or Obese Adults with Type 2 Diabetes: The Look AHEAD Study. Diabetologia 2017; 60: 980–988.
10. Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017; 40: 136–154.
11. Dy SM, Bennett WL, Sharma R, et al. Preventing Complications and Treating Symptoms of Diabetic Peripheral Neuropathy. Agency for Healthcare Research and Quality (US); 2017 Mar. Report No.: 17-EHC005-EF.
12. Vinik A, Perrot S, Vinnik EJ, et al. Capsaicin 8 % Patch Repeat Treatment Plus Standard of Care (SOC) Versus SOC Alone in Painful Diabetic Peripheral Neuropathy: A Randomised, 52-week, Open-Label, Safety Study. BMC Neurol 2016; 16:251.
13. Haanpää M, Cruccu G, Nurmikko TJ, et al. Capsaicin 8 % Patch Versus Oral Pregabalin in Patients with Peripheral Neuropathic Pain. Eur J Pain 2016; 20:316–328.
14. Ziegler D, Nowak H, Kempler P, et al. Treatment of Symptomatic Diabetic Polyneuropathy with the Antioxidant Alpha-Lipoic Acid: A Meta-Analysis. Diabet Med. 2004; 21: 114–21.
15. Ziegler D, Low PA, Litchy WJ, et al. Efficacy and Safety of Antioxidant Treatment With α-Lipoic Acid Over 4 Years in Diabetic Polyneuropathy: The NATHAN 1 Trial. Diabetes Care 2011; 34: 2054–2060.
16. Stracke H, Lindemann A, Federlin K. A Benfotiamine-Vitamin B Combination in Treatment of Diabetic Polyneuropathy. Exp Clin Endocrinol Diabetes1996; 104: 311–316.
17. Stracke H, Gaus W, Achenbach U, et al. Benfotiamine in Diabetic Polyneuropathy (BENDIP): Results of a Randomised, Double Blind, Placebo-Controlled Clinical Study. Exp Clin Endocrinol Diabetes 2008; 116:600–605.
18. Stirban AO, Zeller-Stefan H, Schumacher J et al. Treatment with Benfotiamine in Patients with Diabetic Sensorimotor Polyneuropathy: A Double-Blind, Randomized, Placebo-Controlled, Parallel Group Pilot Study over 12 Months. J Diabetes Complications 2020;34(12):107757.
19. Didangelos Z, Karlafti E, Kotzakioulafi E et al. Vitamin B12 Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Doubleblind, Placebo-Controlled Trial. Nutrients 2021; 13: 395. DOI: 10.3390/nu13020395



Diabetisches Fußsyndrom in Zeiten von Strukturreformen: Chancen und Risiken (Seite 103 – 112)
1. Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic Foot Ulcers: A Review. JAMA. 2023 Jul 3;330(1):62-75. doi: 10.1001/jama.2023.10578. PMID: 37395769.
2. Nationale Diabetes-Surveillance, Robert-Koch-Institut, Faktenblatt "Diabetisches Fußsyndrom" Seite 58-59, 2019
3. Bohn B, Grunerbel A, Altmeier M et al. (2018) Diabetic foot syndrome in patients with diabetes. A multicenter German/Austrian DPV analysis on 33 870 patients. Diabetes Metab Res Rev 34(6):e3020
4. Khan T, Armstrong DG. Ulcer-free, hospital-free and activity-rich days: three key metrics for the diabetic foot in remission. J Wound Care. 2018 Apr 1;27(Sup4):S3-S4. doi: 10.12968/jowc.2018.27.Sup4.S3. PMID: 29641340.
5. Armstrong DG, Mills JL. Toward a change in syntax in diabetic foot care: prevention equals remission. J Am Podiatr Med Assoc 2013; 103(2):161–162.
6. Ogurtsova K, Morbach S, Haastert B, Dubský M, Rümenapf G, Ziegler D, Jirkovska A, Icks A. Cumulative long-term recurrence of diabetic foot ulcers in two cohorts from centres in Germany and the Czech Republic. Diabetes Res Clin Pract. 2021 Feb;172:108621. doi: 10.1016/j.diabres.2020.108621. Epub 2020 Dec 13. PMID: 33316312.
7. Armstrong DG, Swerdlow MA, Armstrong AA, Conte MS, Padula WV, Bus SA. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res. 2020 Mar 24;13(1):16. doi: 10.1186/s13047-020-00383-2. PMID: 32209136; PMCID: PMC7092527.
8. McDermott K, Fang M, Boulton AJM, Selvin E, Hicks CW. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care. 2023 Jan 1;46(1):209-221. doi: 10.2337/dci22-0043. PMID: 36548709; PMCID: PMC9797649.
9. Rosien L, van Dijk PR, Oskam J, Pierie MEN, Groenier KH, Gans ROB, Bilo HJG. Lower Extremity Amputation Rates in People With Diabetes Mellitus: A Retrospective Population Based Cohort Study in Zwolle Region, The Netherlands. Eur J Vasc Endovasc Surg. 2023 May 21:S1078-5884(23)00431-8. doi: 10.1016/j.ejvs.2023.05.030. Epub ahead of print. PMID: 37220802.
10. Wissenschaftlicher Dienst des Bundestages, Kosten der Behandlung von Diabetes mellitus Typ 2, Sachstand 2019, Aktenzeichen WD 9 - 3000 - 052/19, Abschluss der Arbeit: 31. Juli 2019, https://www.bundestag.de/resource/blob/657242/98c8fa973471bb9d87fac74df66e3001/WD-9-052-19-pdf-data.pdf (Abruf 2023-07-20)
11. Destatis (Hrsg.) (2018), Krankheitskostenrechnung – Qualitätsbericht, Berichtsjahr 2015 https://www.destatis.de/DE/Methoden/Qualitaet/Qualitaetsberichte/Gesundheit/krankheitskostenrechnung.pdf?__blob=publicationFile (Abruf: 2023-07-20)
12. Armstrong DG, Swerdlow MA, Armstrong AA, Conte MS, Padula WV, Bus SA. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res. 2020 Mar 24;13(1):16. doi: 10.1186/s13047-020-00383-2. PMID: 32209136; PMCID: PMC7092527.
13. Katharina Kähm, Michael Laxy, Udo Schneider, Wolf H. Rogowski, Stefan K. Lhachimi, Rolf Holle; Health Care Costs Associated With Incident Complications in Patients With Type 2 Diabetes in Germany. Diabetes Care 1 May 2018; 41 (5): 971–978. https://doi.org/10.2337/dc17-1763
14. Musuuza J, Sutherland BL, Kurter S, Balasubramanian P, Bartels CM, Brennan MB. A systematic review of multidisciplinary teams to reduce major amputations for patients with diabetic foot ulcers. J Vasc Surg. 2020 Apr;71(4):1433-1446.e3. doi: 10.1016/j.jvs.2019.08.244. Epub 2019 Oct 30. PMID: 31676181; PMCID: PMC7096268.
15. Eckhard M, Diabetisches Fußsyndrom: Amputationen häufig vermeidbar Dtsch Arztebl 2023; 120(19): A-865 / B-740
16. Schaper NC, van Netten JJ, Apelqvist J, Bus SA, Fitridge R, Game F, Monteiro-Soares M, Senneville E; IWGDF Editorial Board. Practical guidelines on the prevention and management of diabetes-related foot disease (IWGDF 2023 update). Diabetes Metab Res Rev. 2023 May 27:e3657. doi: 10.1002/dmrr.3657. Epub ahead of print. PMID: 37243927.
17. Eckhard M & Engels G, Das diabetische Fußsyndrom besser verstehen, behandeln und vermeiden, Diabetologie und Stoffwechsel 2023; 18(02): 116-139 DOI: 10.1055/a-1780-4200
18. Schaper NC, van Netten JJ, Apelqvist J, Bus SA, Hinchliffe RJ, Lipsky BA; IWGDF Editorial Board. Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes Metab Res Rev. 2020 Mar;36 Suppl 1:e3266. doi: 10.1002/dmrr.3266. PMID: 32176447.
19. Eckhard M, Lawall H, Lobmann R: Kapitel DFS im Deutschen Gesundheitsbericht Diabetes 2023, S108-116; https://www.ddg.info/fileadmin/user_upload/Gesundheitsbericht_2023_gesamt_offene_Datei.pdf
20. Huizing E, Schreve MA, Kortmann W, Bakker JP, de Vries JPPM, Ünlü Ç. The effect of a multidisciplinary outpatient team approach on outcomes in diabetic foot care: a single center study. J Cardiovasc Surg (Torino). 2019 Dec;60(6):662-671. doi: 10.23736/S0021-9509.19.11091-9. Epub 2019 Oct 9. PMID: 31603291.
21. Zertifizierte Fußbehandlungseinrichtungen der AG Diabetischer Fuß in der DDG: Suche auf https://ag-fuss-ddg.de
22. Verträge der KV Berlin: Diabetes mellitus Typ-1 und Diabetes mellitus Typ-2, siehe https://www.kvberlin.de/fuer-praxen/alles-fuer-den-praxisalltag/vertrage-und-recht/vertraege (Abruf 2023-07-20)
23. Gemeinsamer Bundesausschuss (gBA): Anforderungen an strukturierte Behandlungsprogramme: DMP-Richtlinie in der Fassung vom 20. März 2014, zuletzt geändert am 19. Januar 2023 (BAnz AT 31.05.2023 B3) https://www.g-ba.de/downloads
24. IQWiG-Bericht Nr. 984: Entscheidungshilfe zu Amputationen beim diabetischen Fußsyndrom, 27.10.2020 https://www.iqwig.de/download/p20-02_entscheidungshilfe-zu-amputationen-beim-diabetischen-fusssyndrom_rapid-report_v1-0.pdf
25. Entscheidungshilfe zu Amputationen bei Diabetischem Fußsyndrom für Patienten und Angehörige: https://www.gesundheitsinformation.de/pdf/diabetes-typ-2/eh_behandlungen_diabetisches-fusssyndrom.pdf
26. Vebeto Studie 2020, https://www.vebeto.de/krankenhausplanung (Abruf 2023-07-20)
27. Richtlinie zur Heilkundeübertragung: Modellvorhaben zur Übertragung ärztlicher Tätigkeiten an ausgebildete Pflegekräfte. https://www.g-ba.de/richtlinien/77/
28. GKV Spitzenverband: Rahmenvertrag zur verpflichtenden Durchführung von Modellvorhaben zur Übertragung ärztlicher Tätigkeiten nach § 64d Sozialgesetzbuch V https://www.gkv-spitzenverband.de/media/dokumente/krankenversicherung_1/forschung_modellvorhaben/heilkundeuebertragung/Rahmenvertrag_64d_SGB_V.pdf
29. Eckhard, Michael. (2019). Das diabetische Fußsyndrom — mehr als nur eine Wunde am Fuß. Info Diabetologie. 13. 26-37. 10.1007/s15034-019-1609-0.
30. Bekanntmachung eins Beschlusses des gBA über eine Änderung der DMP-Anforderungen-Richtlinie: Änderung der Anlage 1, der Anlage 2 und der Anlage 8 vom 16. Juni 2022: https://www.bundesanzeiger.de/pub/de/amtlicher-teil?1-2.-table~panel~at-row-3-publication~info~cell-result~link
31. Risse A und Großkopf V: Leibesinselschwund – ein haftungsrechtliches Problem bei Diabetes mellitus? Rechtsdepesche für das Gesundheitswesen, S274-280, November/Dezember 2013
32. Eckhard M & Engels G, Das diabetische Fußsyndrom besser verstehen, behandeln und vermeiden, Diabetologie und Stoffwechsel 2023; 18(02): 116-139 DOI: 10.1055/a-1780-4200



Diabetes mellitus – Herzerkrankungen – Schlaganfall (Seite 113 – 122)
1. Jacobs E, Hoyer A, Brinks R et al.: Burden of mortality attributable to diagnosed diabetes: a nationwide analysis based on claims data from 65 million people in Germany. Diabetes Care 2017; 40: 1703
2. Rawshani A,Rawshani A, Franzén S et al.: Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018; 392 (10146): 477-486
3. Rawshani A, Rawshani A, Franzén S et al.: Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2018; 379: 633-644
4. Tschoepe D, Towae F, Papp A et al.: High 3-year-mortality rates in females with newly diagnosed diabetes after acute STEMI and NSTEMI: results of the SWEETHEART registry. Diabetologia 2012; 55: 30–31
5. Neumann FJ, Sousa-Uva M, Ahlsson A et al.; ESC Scientific Document Group: 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019; 40: 87-165
6. Kristensen SL, Preiss D, Jhund PS et al.; PARADIGM-HF Investigators and Committees: Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail 2016; 9: e002560
7. Halle M, Gitt AK, Hanefeld M et al.: Diabetes und Herzinsuffizienz: eine praxisorientierte, kritische Bestandsaufnahme. Dtsch Med Wochenschr 2012; 137: 437–441
8. McMurray JJV, Solomon SD, Inzucci SE et al. for the DAPA-HF Trial Committees and Investigators: Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995-2008. doi: 10.1056/NEJMoa1911303
9. Packer M, Anker SD, Butler I et al. for the EMPEROR-Reduced Trial Invertigators: Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383: 1413-1424. doi: 10.1056/NEJMoa2022190
10. Zannad F, Ferreira JP, Pocock SJ et al.: SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a metaanalysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020; 396: 819-829. doi: 10.1016/S0140-6736(20)31824-9
11. Junttila MJ, Barthel P, Myerburg RJ et al.: Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm 2010; 7: 1396–1403
12. Lynge TH, Svane J, Pedersen-Bjergaard U et al.: Sudden cardiac death among persons with diabetes aged 1-49 years: a 10-year nationwide study of 14 294 deaths in Denmark. Eur Heart J 2020; 41: 2699-2706. doi: 10.1093/eurheartj/ehz891
13. Cubbon RM, Wheatcroft SB, Grant PJ et al.; Evaluation of Methods and Management of Acute Coronary Events Investigators: Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J 2007; 28: 540–550
14. Zinman B, Wanner C, Lachin JM et al.; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117–2128
15. Marso SP, Daniels GH, Brown-Frandsen K et al. for LEADER Steering Comittee on behalf of the LEADER Trial Investigators: Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-322
16. Kosiborod M, Cavender M, Norhammar A: Lower rates of hospitalization for heart failure and all-cause death in new users of SGLT2 inhibitors: the CVD-REAL study. 66th Scientific Session of the American College of Cardiology, Washington, DC. March 17–19, 2017. Abstract 415-1
17. Kirchhof P, Benussi S, Kotecha D et al.: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016; 18: 1609–1678
18. Doherty JU, Gluckman TJ, Hucker WJ et al.: 2017 ACC Expert Consensus Decision Pathway for periprocedural management of anticoagulatoon in patients with nonvalvular atrila Fibrillation: a report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol 2017; 69: 871-898
19. Steffel H, Heidbuchel H: ‘Ten Commandments’ of the EHRA Guide for the Use of NOACs in AF. Eur Heart J 2018; 39: 1322
20. Peters SA, Huxley RR, Woodward M: Diabetes as a risk factor for stroke in women compares with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014; 383: 1973-1980
21. O‘Donnell MJ, Chin SL, Rangarajan S et al.; INTERSTROKE investigators: Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016; 388 (10046): 761-775
22. Jeerakathil T, Johnson JA, Simpson SH et al.: Short-term risk for stroke in doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: a population-based cohort study. Stroke 2007; 38: 1739-1743
23. Bushnell CD, Olson DM, Zhao X et al.; AVAIL Investigators: Secondary preventive medication persistence and adherence 1 year after stroke. Neurology 2011; 77: 1182-1190
24. Selvin E, Wattanakit K, Steffes MW et al. HbA1c and peripheral arterial disease in diabetes. The Atherosclerosis Risk in Communities study. Diabetes Care 2006; 29: 877-882
25. Low Wang CC, Blomster JI, Heizer G et al.: Cardiovascular and limb outcomes in patients with diabetes and peripheral artery disease. The EUCLID Trial. J Am Coll Cardiol 2018; 72: 3274-3284
26. Cosentino F, Grant PJ, Aboyans V et al.: 2019; ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41: 255-323
27. Forst T, Jacob S: ESC/ EASD-Guidelines 2019 – Was muss man wissen? Kompendium Diabetes 2020: 14-18
28. Arnott C, Li Q, Kang A et al.: Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc 2020; 9: e014908
29. Perkovic V, Jardine MJ, Neal B et al.: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380: 2295-2306
30. Liu J, Li L, Deng K et al.: Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ 2017; 357: j2499. doi: 10.1136/bmj.j2499
31. McMurray JJV, Solomon SD, Inzucchi SE et al.: Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995-2008
32. Neal B, Perkovic V, Mahaffey KW et al.: Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644-657
33. Verma S, Mazer DC, Al-Omran M et al.: Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: a subanalysis of EMPA-REG OUTCOME. Circulation 2018; 137: 405-407
34. Dhatariya K, Bain SC, Buse JB et al.: The impact of liraglutide on diabetes-related foot ulceration and associated complications in patients with type 2 diabetes at high risk for cardiovascular events: results From the LEADER trial. Diabetes Care 2018; 41: 2229-2235
35. Solomon SD, de Boer RA, DeMets D et al.: Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. Eur J Heart Fail 2021; 23: 1217-1225. doi: 10.1002/ejhf.2249. Epub 2021 Jun 9
36. Guckel D, Isgandarova K, Bergau L et al.: The effect of diabetes mellitus on the recurrence of atrial fibrillation after ablation. J Clin Med 2021; 10: 4863. doi: 10.3390/jcm10214863
37. Tomic D, Shaw JE, Magliano DJ: The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 2022; 18: 525-539. doi: 10.1038/s41574-022-00690-7
38. Kremers SHM, Wild SH, Elders PJM et al.: The role of mental disorders in precision medicine for diabetes: a narrative review. Diabetologia 2022; 65: 1895-1906. Epub 2022 Jun 22. doi: 10.1007/s00125-022-05738-x
39. Biessels GJ, Despa F: Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications Nat Rev Endocrinol 2018; 14: 591-604. doi: 10.1038/s41574-018-0048-7
40. Antal B, McMahon LP, Sultan SF et al.: Type 2 diabetes mellitus accelerates brain aging and cognitive decline: complementary findings from UK Biobank and meta-analyses. Elife 2022; 11: e73138. doi: 10.7554/eLife.73138



Diabetes und Erkrankungen des Zahnbetts – ein Update (Seite 123 – 129)
1. Schwendicke F, Krois J, Kocher T, Hoffmann T, Micheelis W, Jordan RA: More teeth in more elderly: Periodontal treatment needs in Germany 1997–2030. J Clin Periodontol 45,1400-1407 (2018) https://doi.org/10.1111/jcpe.13020
2. Jordan AR, Micheelis W (Hrsg): Fünfte Deutsche Mundgesundheitsstudie (DMS V). Deutscher Ärztever-lag (DÄV), Köln 2016.
3. Deutscher Gesundheitsbericht 2022; Epidemiologie des Diabetes in Deutschland
4. Seitz MW, Listl S, Bartols A, Schubert I, Blaschke K, Haux C et al.: Current Knowledge on Correlations Between Highly Prevalent Dental Conditions and Chronic Diseases: An Umbrella Review. Prev Chronic Dis 16, 180641 (2019). http://dx.doi.org/10.5888/pcd16.180641
5. Schmalz G, Kreher D, Ziebolz D: Diabetes in der Zahnmedizin Teil 1: Biologische und klinische Assozia-tionen von oraler Gesundheit und Diabetes. zm 13, 36-43 (2022).
6. Deschner J: Interaktionen zwischen Parodontitis und Systemerkrankungen. Der Freie Zahnarzt 01, 68-76 (2018) https://doi.org/10.1007/s12614-017-6774-8
7. Deschner J, Haak T, Jepsen S, Kocher T, Mehnert H, Meyle J, Schumm-Draeger P-M, Tschöpe D: Dia-betes mellitus und Parodontitis. Wechselbeziehung und klinische Implikationen. Ein Konsensuspapier. Intern-ist 52, 466-477 (2011).
8. Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J: Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J Clin Periodontol 00, 1–7 (2017). https://doi.org/10.1111/jcpe.12732
9. Tonetti MS, Chapple IL, Jepsen S, Sanz M.:Primary and secondary prevention of periodontal and peri-implant diseases: introduction to, and objectives of the 11th European Workshop on Periodontology consen-sus conference. J Clin Periodontol 42 Suppl. 16, 1-4 (2015).
10. Bundeszahnärztekammer: Parodontitis-Symptome: Fast jeder zweite Deutsche unterschätzt Mundge-ruch. Pressemitteilung (22.03.2022) www.bzaek.de/fileadmin/PDFs/pm22/220322_PM_paroK.pdf
11. Prchala G: Kampagne zu den Wechselwirkungen von Diabetes und Parodontitis - Botschaft mit Reich-weite. zm 5, 46-47 (2023)
12. Strauss SM, Russell S, Wheeler A et al: The dental office visit as a potential opportunity for diabetes screening: an analysis using NHANES 2003–2004 data. J Public Health Dent 70,156–162 (2010)
13. Oesterreich D, Ziller S: Diabetiker in der zahnärztlichen Praxis. Diabetologe 7, 381–386 (2011) https://doi.org/10.1007/s11428-010-0655-y
14. Gemeinsamer Bundesausschuss (GB-A, Hrsg.): Beschluss zur Richtlinie zur systematischen Behand-lung von Parodontitis und anderer Parodontalerkrankungen (PAR-Richtlinie). Erstfassung, 17. Dezember 2020 https://www.g-ba.de/beschluesse/4623/ Zugegriffen: 23. April 2022
15. https://www.diabetesstiftung.de/findrisk
16. Siegel EG, Kocher Th: Volkskrankheiten Diabetes und Parodontitis: rechtzeitige Diagnose! Deutscher Gesundheitsbericht Diabetes 2018 – Die Bestandaufnahme. DDG und diabetesDE (Hrsg.), 275-281 (2017)
17. Schmalz G, Kreher D, Ziebolz D: Diabetes in der Zahnmedizin Teil 2: Diabetes-Früherkennung und in-dividualpräventive Betreuung. zm 14, 66-73 (2022).
18. Ziller S: Die Weltgesundheitsorganisation fordert: Europa muss mehr für die Mundgesundheit tun. zm 10, 58-60 (2023)
19. Heilmann A, Ziller S: Reduzierung des Zuckerkonsums für eine bessere Mundgesundheit –Welche Strategien sind Erfolg versprechend? Bundesgesundheitsbl 64, 838–846 (2021)
20. https://doi.org/10.1007/s00103-021-03349-2



Krebs als Spätkomplikation von Metabolischem Syndrom, Prädiabetes und Typ-2-Diabetes (Seite 130 – 137)
1. Wengler A, Rommel A, Plaß D, Gruhl H, Leddin J, Ziese T, von der Lippe E on behalf of the BURDEN 2020 Study Group: Years of life lost to death—a comprehensive analysis of mortality in Germany conducted as part of the BURDEN 2020 project. Dtsch Arztebl Int 2021; 118: 137–44. DOI: 10.3238/arztebl.m2021.0148
2. Dagenais GR, Leong DP, Rangarajan S et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet 2020; 395: 785–794
3. Jonathan Pearson-Stuttard et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records Lancet Diabetes & Endocrinology Volume 9 Issue 3 Pages 165-173 (March 2021)
4. Collier A, Meney C, Hair M, Cameron L, Boyle JG. Cancer has overtaken cardiovascular disease as the commonest cause of death in Scottish type 2 diabetes patients: A population-based study (The Ayrshire Diabetes Follow-up Cohort study). J Diabetes Investig. 2020 Jan;11(1):55-61. doi: 10.1111/jdi.13067. Epub 2019 Jul 25. PMID: 31267699; PMCID: PMC6944844.
5. Scherübl H. Metabolisches Syndrom und Krebsrisiko. Dtsch Med Wochenschr. 2022 Aug;147(16):1068-1077. German. doi: 10.1055/a-1868-9164. Epub 2022 Aug 15. PMID: 35970189.
6. Scherübl H. Krebsrisiko bei Prädiabetes und Typ-2-Diabetes. Diabetologie und Stoffwechsel 2022. DOI: 10.1055/a-1837-2035
7. Scherübl H. Typ-2-Diabetes-mellitus und Krebsrisiko. Dtsch Med Wochenschr. 2021 Sep;146(18):1218-1225. German. doi: 10.1055/a-1529-4521. Epub 2021 Sep 14. PMID: 34521128.
8. Sjöholm K, Carlsson LMS, Svensson PA et al. Association of Bariatric Surgery With Cancer Incidence in Patients With Obesity and Diabetes: Long-Term Results From the Swedish Obese Subjects Study. Diabetes Care 2021 Nov 19:dc211335. doi: 10.2337/dc21-1335. Epub ahead of print. PMID: 34799430.
9. Rustgi VK, Li Y, Gupta K et al. Bariatric Surgery Reduces Cancer Risk in Adults With Nonalcoholic Fatty Liver Disease and Severe Obesity. Gastroenterology 2021; S0016-5085(21)00529-1
10. Mao D, Lau ESH, Wu H, Yang A, Shi M, Fan B, Tam CHT, Chow E, Kong APS, Ma RCW, Luk A, Chan JCN. Risk associations of long-term HbA1c variability and obesity on cancer events and cancer-specific death in 15,286 patients with diabetes - A prospective cohort study. Lancet Reg Health West Pac. 2021 Nov 12;18:100315. doi: 10.1016/j.lanwpc.2021.100315. PMID: 35024653; PMCID: PMC8669375.
11. Chovsepian A, Prokopchuk O, Petrova G, Gjini T, Kuzi H, Heisz S, Janssen KP, Martignoni ME, Friess H, Hauner H, Rohm M. Diabetes increases mortality in patients with pancreatic and colorectal cancer by promoting cachexia and its associated inflammatory status. Mol Metab. 2023 Apr 22;73:101729. doi: 10.1016/j.molmet.2023.101729. Epub ahead of print. PMID: 37094629; PMCID: PMC10192649.
12. Scherübl H. Prävention des Pankreaskarzinoms. Dtsch Med Wochenschr. 2023 Mar;148(5):246-252. German. doi: 10.1055/a-1975-2366. Epub 2023 Feb 27. PMID: 36848888.
13. https://www.cancerresearchuk.org/about-cancer/pancreatic-cancer/getting-diagnosed/referral-specialist
14. Yang Z, Lv Y, Yu M, Mei M, Xiang L, Zhao S, Li R. GLP-1 receptor agonist-associated tumor adverse events: A real-world study from 2004 to 2021 based on FAERS. Front Pharmacol. 2022 Oct 25;13:925377. doi: 10.3389/fphar.2022.925377. PMID: 36386208; PMCID: PMC9640975.
15. Krishnan A, Hadi Y, Hutson WR, Thakkar S, Singh S. Glucagon-Like Peptide 1-Based Therapies and Risk of Pancreatic Cancer in Patients With Diabetes and Obesity. Pancreas 2022; 51(10):1398-1403. doi: 10.1097/MPA.0000000000002197. PMID: 37099785.
16. Hu WS, Lin CL. Patients with diabetes with and without sodium-glucose cotransporter-2 inhibitors use with incident cancer risk. J Diabetes Complications. 2023 May;37(5):108468. doi: 10.1016/j.jdiacomp.2023.108468. Epub 2023 Mar 22. PMID: 37043985.
17. Lemanska A, Price CA, Jeffreys N et al. BMI and HbA1c are metabolic markers for pancreatic cancer: Matched case-control study using a UK primary care database. PLoS One. 2022 Oct 5;17(10):e0275369. doi: 10.1371/journal.pone.0275369. PMID: 36197912; PMCID: PMC9534412.
18. Zhang Y, Wang QL, Yuan C, Lee AA, Babic A, Ng K, Perez K, Nowak JA, Lagergren J, Stampfer MJ, Giovannucci EL, Sander C, Rosenthal MH, Kraft P, Wolpin BM. Pancreatic cancer is associated with medication changes prior to clinical diagnosis. Nat Commun 2023 Apr 28;14(1):2437. doi: 10.1038/s41467-023-38088-2. PMID: 37117188; PMCID: PMC10147931.
19. Simon TG, King LY, Chong DQ, Nguyen LH, Ma Y, VoPham T, Giovannucci EL, Fuchs CS, Meyerhardt JA, Corey KE, Khalili H, Chung RT, Zhang X, Chan AT. Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: Results from two prospective cohort studies. Hepatology. 2018 May;67(5):1797-1806. doi: 10.1002/hep.29660. Epub 2018 Mar 26. PMID: 29152763; PMCID: PMC5906170.
20. Levin TR, Corley DA, Jensen CD, Schottinger JE, Quinn VP, Zauber AG, Lee JK, Zhao WK, Udaltsova N, Ghai NR, Lee AT, Quesenberry CP, Fireman BH, Doubeni CA. Effects of Organized Colorectal Cancer Screening on Cancer Incidence and Mortality in a Large Community-Based Population. Gastroenterology. 2018 Nov;155(5):1383-1391.e5. doi: 10.1053/j.gastro.2018.07.017. Epub 2018 Jul 19. PMID: 30031768; PMCID: PMC6240353.



Diabetes bei Kindern und Jugendlichen (Seite 138 – 141)
1. Stahl-Pehe A, Kamrath C, Prinz N, et al. Prevalence of type 1 and type 2 diabetes in children and adolescents in Germany from 2002 to 2020: A study based on electronic health record data from the DPV registry. J Diabetes 2022, doi:10.1111/1753-0407.13339
2. D‘Souza D, Empringham J, Pechlivanoglou P, et al. Incidence of Diabetes in Children and Adolescents During the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. JAMA Netw Open 2023;6(6):e2321281, doi:10.1001/jamanetworkopen.2023.21281
3. Denzer C, Rosenbauer J, Klose D, et al. Is COVID-19 to Blame? Trends of Incidence and Sex Ratio in Youth-Onset Type 2 Diabetes in Germany. Diabetes Care 2023, doi:10.2337/dc22-2257
4. Karges B, Tittel SR, Bey A, et al. Continuous glucose monitoring versus blood glucose monitoring for risk of severe hypoglycaemia and diabetic ketoacidosis in children, adolescents, and young adults with type 1 diabetes: a population-based study. Lancet Diabetes Endocrinol 2023, doi:10.1016/S2213-8587(23)00061-X
5. von Sengbusch S, Biester T. Telemedizin in der Diabetologie 2022 – wo steht sie? Die Diabetologie 2023;19(1):1-3, doi:10.1007/s11428-022-00998-y
6. Sherr JL, Schoelwer M, Dos Santos TJ, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetes technologies: Insulin delivery. Pediatr Diabetes 2022;23(8):1406-1431, doi:10.1111/pedi.13421
7. Wadwa RP, Reed ZW, Buckingham BA, et al. Trial of Hybrid Closed-Loop Control in Young Children with Type 1 Diabetes. N Engl J Med 2023;388(11):991-1001, doi:10.1056/NEJMoa2210834
8. Ware J, Allen JM, Boughton CK, et al. Randomized Trial of Closed-Loop Control in Very Young Children with Type 1 Diabetes. N Engl J Med 2022;386(3):209-219, doi:10.1056/NEJMoa2111673
9. Forlenza GP, Ekhlaspour L, DiMeglio LA, et al. Glycemic Outcomes of Children 2-6 Years of Age with Type 1 Diabetes during the Pediatric MiniMed™ 670G System Trial. Pediatr Diabetes 2022, doi:10.1111/pedi.13312
10. Pulkkinen MA, Varimo TJ, Hakonen ET, et al. MiniMed 780G™ in 2- to 6-Year-Old Children: Safety and Clinical Outcomes After the First 12 Weeks. Diabetes Technol Ther 2023;25(2):100-107, doi:10.1089/dia.2022.0313
11. Sundberg F, deBeaufort C, Krogvold L, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Managing diabetes in preschoolers. Pediatr Diabetes 2022;23(8):1496-1511, doi:10.1111/pedi.13427
12. Buchmann M, Tuncer O, Auzanneau M, et al. Incidence, prevalence and care of type 1 diabetes in children and adolescents in Germany: Time trends and regional socioeconomic situation. Journal of Health Monitoring 2023;2):57--78
13. Addala A, Auzanneau M, Miller K, et al. A Decade of Disparities in Diabetes Technology Use and HbA1c in Pediatric Type 1 Diabetes: A Transatlantic Comparison. Diabetes Care 2020, doi:10.2337/dc20-0257
14. Chobot A, Eckert AJ, Biester T, et al. Psychological Care for Children and Adolescents with Diabetes and Patient Outcomes: Results from the International Pediatric Registry SWEET. Pediatric Diabetes 2023;2023(1-9, doi:10.1155/2023/8578231
15. Saßmann H, Kim-Dorner S-J, Berndt V, et al. Understanding Daily, Emotional, and Physical Burdens and Needs of Parents Caring for Children with Type 1 Diabetes. Journal of Diabetes Research 2022;2022(1-11, doi:10.1155/2022/9604115
16. Boughton CK, Allen JM, Ware J, et al. Closed-Loop Therapy and Preservation of C-Peptide Secretion in Type 1 Diabetes. N Engl J Med 2022;387(10):882-893, doi:10.1056/NEJMoa2203496
17. McVean J, Forlenza GP, Beck RW, et al. Effect of Tight Glycemic Control on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2023, doi:10.1001/jama.2023.2063
18. Forlenza GP, McVean J, Beck RW, et al. Effect of Verapamil on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2023, doi:10.1001/jama.2023.2064
19. Bode K, Reschke F, Weiskorn J, et al. Das europäische Netzwerk INNODIA. Immuntherapie zum Erhalt der Betazellfunktion bei klinischer Manifestation 2022;20(03):128-134, doi:10.1055/a-1827-0147
20. Steck AK, Dong F, Geno Rasmussen C, et al. CGM Metrics Predict Imminent Progression to Type 1 Diabetes: Autoimmunity Screening for Kids (ASK) Study. Diabetes Care 2022;45(2):365-371, doi:10.2337/dc21-0602
21. Vehik K, Boulware D, Killian M, et al. Rising Hemoglobin A1c in the Nondiabetic Range Predicts Progression of Type 1 Diabetes As Well As Oral Glucose Tolerance Tests. Diabetes Care 2022;45(10):2342-2349, doi:10.2337/dc22-0828
22. Segerer H, Wurm M, Grimsmann JM, et al. Diabetic Ketoacidosis at Manifestation of Type 1 Diabetes in Childhood and Adolescence—Incidence and Risk Factors. Dtsch Arztebl Int 2021;118(Forthcoming), doi:10.3238/arztebl.m2021.0133



Menschen mit Diabetes wünschen sich "inklusives Gesundheitswesen" (Seite 143 – 148)
1. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Gesundheitspersonal/_inhalt.html, 15.06.2023, 14.40 h



Sprache und Diabetes: Language Matters (Seite 149 – 152)
1. DDG, diabetesDE, #dedoc°: SPRACHE UND DIABETES – #LanguageMatters (Quelle noch kokmplettieren, mit URL)



Diabetes bei Frauen und Männern – die Unterschiede (Seite 157 – 161)
1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
2. Seidel-Jacobs E, Tönnies T, Rathmann W. Epidemiologie des Diabetes in Deutschland. In: Deutsche Diabetes Gesellschaft, Deutsche Diabetes-Hilfe, editors. Deutscher Gesundheitsbericht Diabetes 2023. Mainz: Verlag Kirchheim & Co. GmbH; 2022.
3. Kaleta M, Leutner M, Thurner S, Endel G, Kiss N, Robausch M, et al. Trends in diabetes incidence in Austria 2013-2017. Sci Rep. 2023;13(1):8715.
4. Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr Rev. 2016;37(3):278-316.
5. Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66(6):986-1002.
6. Anderwald C, Gastaldelli A, Tura A, Krebs M, Promintzer-Schifferl M, Kautzky-Willer A, et al. Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males. J Clin Endocrinol Metab. 2011;96(2):515-24.
7. Simmons D, Immanuel J, Hague WM, Teede H, Nolan CJ, Peek MJ, et al. Treatment of Gestational Diabetes Mellitus Diagnosed Early in Pregnancy. N Engl J Med. 2023;388(23):2132-44.
8. Kautzky-Willer A, Handisurya A. Metabolic diseases and associated complications: sex and gender matter! Eur J Clin Invest. 2009;39(8):631-48.
9. Kautzky-Willer A, Kosi L, Lin J, Mihaljevic R. Gender-based differences in glycaemic control and hypoglycaemia prevalence in patients with type 2 diabetes: results from patient-level pooled data of six randomized controlled trials. Diabetes, Obesity and Metabolism. 2015;17(6):533-40.
10. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, et al. Sex and gender: modifiers of health, disease, and medicine. Lancet. 2020;396(10250):565-82.
11. Schütt M, Zimmermann A, Hood R, Hummel M, Seufert J, Siegel E, et al. Gender-specific Effects of Treatment with Lifestyle, Metformin or Sulfonylurea on Glycemic Control and Body Weight: A German Multicenter Analysis on 9 108 Patients. Exp Clin Endocrinol Diabetes. 2015;123(10):622-6.
12. Kautzky-Willer A, Harreiter J. Sex and gender differences in therapy of type 2 diabetes. Diabetes Res Clin Pract. 2017;131:230-41.
13. Mauvais-Jarvis F, Berthold HK, Campesi I, Carrero JJ, Dakal S, Franconi F, et al. Sex- and Gender-Based Pharmacological Response to Drugs. Pharmacol Rev. 2021;73(2):730-62.
14. Glechner A, Harreiter J, Gartlehner G, Rohleder S, Kautzky A, Tuomilehto J, et al. Sex-specific differences in diabetes prevention: a systematic review and meta-analysis. Diabetologia. 2015;58(2):242-54.
15. Gong Q, Zhang P, Wang J, Ma J, An Y, Chen Y, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7(6):452-61.
16. Garcia MJ, McNamara PM, Gordon T, Kannel WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes. 1974;23(2):105-11.
17. Harreiter J, Fadl H, Kautzky-Willer A, Simmons D. Do Women with Diabetes Need More Intensive Action for Cardiovascular Reduction than Men with Diabetes? Curr Diab Rep. 2020;20(11):61.
18. Peters SAE, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet. 2014;383(9933):1973-80.
19. Huxley RR, Peters SA, Mishra GD, Woodward M. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(3):198-206.
20. Clemens KK, Woodward M, Neal B, Zinman B. Sex Disparities in Cardiovascular Outcome Trials of Populations With Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2020;43(5):1157-63.
21. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62(6):905-14.
22. Xu G, You D, Wong L, Duan D, Kong F, Zhang X, et al. Risk of all-cause and CHD mortality in women versus men with type 2 diabetes: a systematic review and meta-analysis. Eur J Endocrinol. 2019;180(4):243-55.
23. Prospective Studies Collaboration, Asia Pacific Cohort Studies Collaboration. Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies. Lancet Diabetes Endocrinol. 2018;6(7):538-46.
24. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332(7533):73-8.
25. Kautzky-Willer A, Leutner M, Abrahamian H, Fruhwald L, Hoppichler F, Lechleitner M, et al. [Sex and gender-specific aspects in prediabetes and diabetes mellitus-clinical recommendations (Update 2023)]. Wien Klin Wochenschr. 2023;135(Suppl 1):275-85.
26. Wright AK, Kontopantelis E, Emsley R, Buchan I, Mamas MA, Sattar N, et al. Cardiovascular Risk and Risk Factor Management in Type 2 Diabetes Mellitus. Circulation. 2019;139(24):2742-53.
27. Ohkuma T, Komorita Y, Peters SAE, Woodward M. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia. 2019;62(9):1550-60.
28. Fujita Y, Morimoto T, Tokushige A, Ikeda M, Shimabukuro M, Node K, et al. Women with type 2 diabetes and coronary artery disease have a higher risk of heart failure than men, with a significant gender interaction between heart failure risk and risk factor management: a retrospective registry study. BMJ Open Diabetes Res Care. 2022;10(2).
29. Vogel B, Acevedo M, Appelman Y, Bairey Merz CN, Chieffo A, Figtree GA, et al. The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet. 2021;397(10292):2385-438.
30. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25(11):1657-66.
31. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385(16):1451-61.
32. de Ritter R, Sep SJS, van der Kallen CJH, van Greevenbroek MMJ, de Jong M, Vos RC, et al. Sex differences in the association of prediabetes and type 2 diabetes with microvascular complications and function: The Maastricht Study. Cardiovasc Diabetol. 2021;20(1):102.



Diabetes und Migration: Wie groß ist das Problem? (Seite 162 – 165)
1. American Diabetes Association (ADA). Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(S1):S81-S90.
2. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: 2021. Available at: https://www.diabetesatlas.org
3. Meeks KA, Freitas-Da-Silva D, Adeyemo A, et al. Disparities in type 2 diabetes prevalence among ethnic minority groups resident in Europe: a systematic review and meta-analysis. Intern Emerg Med. 2016 Apr;11(3):327-40.
4. Domínguez Armengol G, Hayfron-Benjamin CF, van den Born BJH, et al. Microvascular and macrovascular complications in type 2 diabetes in a multi-ethnic population based in Amsterdam. The HELIUS study. Primary Care Diabetes. 2021;15:528-534.
5. Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361-369.
6. Danquah I, Mank I, Hampe CS, et al. Subgroups of adult-onset diabetes: a data-driven cluster analysis in a Ghanaian population. Sci Rep. 2023;13(1):10756.
7. Bavuma C, Sahabandu D, Musafiri S, et al. Atypical forms of diabetes mellitus in Africans and other non-European ethnic populations in low- and middle-income countries: a systematic literature review. J Glob Health. 2019;9(2):020401.
8. Bonsu Osei T, Mank I, Sorgho R, et al. Aetiological research on the health of migrants living in Germany: a systematic literature review. BMJ Open. 2022;12(6): e058712.
9. Cohen RM, Haggerty S, Herman WH. HbA1c for the diagnosis of diabetes and prediabetes: Is it time for a mid-course correction? J Clin Endocrinol Metab. 2010;95(12):5203-5206.
10. Hinzmann R, Schlaeger C, Tran CT. What do we need beyond hemoglobin A1c to get the complete picture of glycemia in people with diabetes? Int J Med Sci. 2012;9:665-681.
11. Florkowski C. HbA as a diagnostic test for diabetes mellitus – reviewing the evidence. Clin Biochem Rev. 2013;34:75-84.
12. Hampe CS, Sahabandu D, Kaiser V, et al. Geographic location determines beta-cell autoimmunity among adult Ghanaians: Findings from the RODAM study. Immun Inflamm Dis. 2020;8:299-309.
13. S¸at S, Aydinkoç-Tuzcu K, Berger F, et al. Diabetes und Migration. Diabetologie und Stoffwechsel. 2022;17(S02):S411-S431.
14. Nauck M, Gerdes C, Petersmann A, et al. Definition, Klassifikation und Diagnostik des Diabetes mellitus: Update 2020. Diabetologie. 2020;15 (Suppl 1):S9–S17.
15. Amoah S, Enin R, Sagoe K, et al. Feasibility of a culturally adapted dietary weight-loss intervention among Ghanaian Migrants in Berlin, Germany: The ADAPT Study. International Journal of Environmental Research and Public Health. 2021;18:510.



Diabetes bei Menschen mit kognitiven und körperlichen Beeinträchtigungen (Seite 167 – 174)
1. Bundesministerium für Arbeit und Soziales (Hrsg): Dritter Teilhabebericht der Bundesregierung über die Lebenslagen von Menschen mit Beeinträchtigungen. Teilhabe – Beeinträchtigung – Behinderung. Bundesministerium für Arbeit und Soziales, Bonn. https://www.bmas.de/DE/Service/Publikationen/Broschueren/a125-21-teilhabebericht.html [Zugriff am 20.09.2023]
2. Huang ES, Laiteerapong N, Liu JY et al.: Rates of complications and mortality in older patients with diabetes mellitus: the diabetes and aging study. JAMA Intern Med. 2014; 174(2):251-8. doi: 10.1001/jamainternmed.2013.12956.
3. Hillson R.: Sensory disabilities in people with diabetes. In Diabetes in Old Age (eds A.J. Sinclair, T. Dunning, L.R. Mañas and M. Munshi). https://doi.org/10.1002/9781118954621.ch12
4. Prütz F, & Krause L: Gesundheit von Menschen mit Beeinträchtigungen und Behinderungen – Ausgewählte Indikatoren aus der Studie GEDA 2014/2015-EHIS. Journal of Health Monitoring 2022;7(1):28-51.
5. Wong, E., Backholer, K., Harding, J. et al.: A systematic review and meta-analysis of diabetes and risk of physical disability and functional impairment - protocol. Syst Rev 2012;1:47. https://doi.org/10.1186/2046-4053-1-47
6. Xue M, Xu W, Ou YN: Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev 55:100944. https://doi.org/10.1016/j.arr.2019.100944
7. United Nations. (2006). Convention on the Rights of Persons with Disabilities. Treaty Series, 2515, 3.
8. Seifert A, Spring S: Sehen, Hören und Demenz im stationären Pflegekontext. NOVAcura 2016;47(7), 48–49.
9. Hwang PH, Longstreth WT, Thielke SM, et al.: Longitudinal Changes in Hearing and Visual Impairments and Risk of Dementia in Older Adults in the United States. JAMA Netw Open. 2022;5(5):e2210734. doi:10.1001/jamanetworkopen.2022.10734
10. Sinclair AJ, Conroy SP, Bayer AJ: Impact of diabetes on physical function in older people. Diabetes Care 2008;31:233-5.
11. Gioacchini FM, Pisani D, Viola P et al.: Diabetes Mellitus and Hearing Loss: A Complex Relationship. Medicina (Kaunas). 2023;59(2):269. doi: 10.3390/medicina59020269.
12. Khoo K, Man REK, Rees G. et al.: The relationship between diabetic retinopathy and psychosocial functioning: a systematic review. Qual Life Res 2019;28,2017–2039. https://doi.org/10.1007/s11136-019-02165-1
13. Tesch-Römer C, Wahl H-W: Toward a more comprehensive concept of successful aging: disability and care needs. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences 2017;72(2), S. 310-318. DOI: 10.1093/geronb/gbw162
14. Ponto KA, Koenig J, Peto T et al.: Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 2016; 59: 1913-1919
15. Hammes HP, Welp R, Kempe HP, Wagner C, Siegel E, Holl RW; DPV Initiative—German BMBF Competence Network Diabetes Mellitus. Risk Factors for Retinopathy and DME in Type 2 Diabetes-Results from the German/Austrian DPV Database. PLoS One. 2015;10(7):e0132492. doi: 10.1371/journal.pone.0132492.
16. Heydarian NM, Brown-Podgorski B, Ramirez J. Visual Impairment and Self-Efficacy in Diabetes Management. The Science of Diabetes Self-Management and Care. 2021;47(5):346-354. doi:10.1177/26350106211033811
17. Baiduc RR, Helzner EP. Epidemiology of Diabetes and Hearing Loss. Semin Hear. 2019 Nov;40(4):281-291. doi: 10.1055/s-0039-1697643.
18. Cheng YJ, Gregg EW, Saaddine JB, Imperatore G, Zhang X, Albright AL. Three decade change in the prevalence of hearing impairment and its associa- tion with diabetes in the United States. Prev Med 2009;49(05):360–364
19. Horikawa C, Kodama S, Tanaka S, Fujihara K, Hirasawa R, Yachi Y, Shimano H, Yamada N, Saito K, Sone H. Diabetes and risk of hearing impairment in adults: a meta-analysis. J Clin Endocrinol Metab. 2013 Jan;98(1):51-8. doi: 10.1210/jc.2012-2119.
20. Le Floch J-P, Le Li.vre G, Labroue M, et al. Smell dysfunction and related factors in diabetic patients. Diabetes Care 1993;16: 934–7.
21. Wasalathanthri S, Hettiarachchi P, Prathapan S. Sweet taste sensitivity in pre-diabetics, diabetics and normoglycemic controls: a comparative cross sectional study. BMC Endocr Disord. 2014;14:67. doi: 10.1186/1472-6823-14-67
22. Altundag A, Ay SA, Hira S, Salihoglu M, Baskoy K, Deniz F, et al. Olfactory and gustatory functions in patients with non-complicated type 1 diabetes mellitus. Eur Arch Otorhinolaryngol. 2017;274:2621–2627. doi: 10.1007/s00405-017-4497-8
23. Pang NYL et al. Association of Olfactory Impairment With All-Cause Mortality: A Systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg 2022; https://doi.org/10.1001/jamaoto.2022.0263
24. Paulignan B., Lacroix M.-C., Aimé P., Baly C., Caillol M., Congar P., Julliard A.K., Tucker K., Fadool D.A. Olfaction Under Metabolic Influences. Chem. Senses. 2012;37:769–797. doi: 10.1093/chemse/bjs059
25. Nagururu NV et al. The Association of Peripheral and Central Olfaction With Frailty in Older Adults. J Gerontol A Biol Sci Med Sci. 2022; https://doi.org/10.1093/gerona/glac237
26. Speth MM, Speth US, Sedaghat AR, Hummel T. Riech- und Schmeckstörungen [Olfactory and gustatory disorders]. DGNeurologie. 2022;5(3):225–35. German. doi: 10.1007/s42451-022-00434-x.
27. Pfützner J, Hellhammer J, Musholt P, Pfützner AH, Böhnke J, Torsten H, Amann-Zalan I, Ganz M, Forst T, Pfützner A. Evaluation of dexterity in insulin-treated patients with type 1 and type 2 diabetes mellitus. J Diabetes Sci Technol. 2011;5(1):158-65. doi: 10.1177/193229681100500122.
28. Jacobson AM, Ryan CM, Braffett BH et al.; DCCT/EDIC Research Group: Cognitive performance declines in older adults with type 1 diabetes: results from 32 years of follow-up in the DCCT and EDIC Study. Lancet Diabetes Endocrinol. 2021;9(7):436-445. doi: 10.1016/S2213-8587(21)00086-3
29. Xue M, Xu W, Ou YN et al.: Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944. doi: 10.1016/j.arr.2019.100944.
30. Kulzer, B. Körperliche und psychische Folgeerkrankungen bei Diabetes mellitus.Bundesgesundheitsbl 65, 503–510 (2022). https://doi.org/10.1007/s00103-022-03517-y
31. Braun AK, Kubiak T, Kuntsche J et al.: SGS: a structured treatment and teaching programme for older patients with diabetes mellitus--a prospective randomised controlled multi-centre trial. Age Ageing. 2009;38(4):390-6. doi: 10.1093/ageing/afp056
32. Bahrmann, A, Hochstadt, S, Uhlig M. (2020). Digitalisierung für ältere Menschen mit Diabetes. In: Digitalisierungs- und Technologiereport Diabetes. Zugriff: https://www.dut-report.de/2020/01/14/digitalisierung-fuer-aeltere-menschen-mit-diabetes/
33. Grammes J, Küstner E, Dapp A et al. fort he DPV initiative: Comparative characteristics of older people with type 1 diabetes treated with continuous subcutaneous insulin infusion or insulin injection therapy: data from the German/Austrian DPV registry. Diabet Med. 2020 May;37(5):856-862. doi: 10.1111/dme.14218.
34. Grammes J, Schmid S, Bozkurt L et al. for the DPV initiative: Continuous Glucose Monitoring in older Adults with Diabetes: Data from the Diabetes Prospective Follow-up (DPV) Registry. Manuscript in submission.
35. Bahrmann, A., Bahrmann, P., Baumann, J et al.: S2k-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. Diabetologie und Stoffwechsel 2018; 13(05): 423-489
36. Sy SL, Munshi MM, Toschi E: Can Smart Pens Help Improve Diabetes Management? J Diabetes Sci Technol. 2022;16(3):628-634. doi: 10.1177/1932296820965600.
37. Heinemann L, Drossel D, Freckmann G et al.: Usability of Medical Devices for Patients With Diabetes Who Are Visually Impaired or Blind. J Diabetes Sci Technol. 2016;10(6):1382-1387. doi: 10.1177/1932296816666536.
38. Uslan MM, Burton DM, Chertow BS, Collins R. Accessibility of insulin pumps for blind and visually impaired people. Diabetes Technol Ther. 2004 Oct;6(5):621-34. doi:
39. Burton DM, Uslan MM, Blubaugh MV, et al.: Are current insulin pumps accessible to blind and visually impaired people? J Diabetes Sci Technol. 2009;3(3):613-8. doi: 10.1177/193229680900300327.
40. Marom L: Insulin pump access issues for visually impaired people with type 1 diabetes. Diabetes Res Clin Pract. 2010;89(1):e13-5. doi: 10.1016/j.diabres.2010.04.005. Epub 2010 May 4. PMID: 20444517.
41. Reuschel W, Uslan MM: Accessibility of Insulin Pump Displays to People With Low Vision. J Diabetes Sci Technol. 2014;8(1):192-193. doi: 10.1177/1932296813511738.
42. Trolio, MGA, Hamilton, K, Sukhai, MA: The impact of the current accessibility of insulin pumps on the lives of the visually impaired in Canada. Journal of Blindness Innovation & Research 2022, 12(1).
43. Pratley RE, Kanapka LG, Rickels MR et al.: Wireless Innovation for Seniors With Diabetes Mellitus (WISDM) Study Group. Effect of Continuous Glucose Monitoring on Hypoglycemia in Older Adults With Type 1 Diabetes: A Randomized Clinical Trial. JAMA. 2020;323(23):2397-2406. doi: 10.1001/jama.2020.6928.
44. Kahkoska AR, Smith C, Thambuluru S, et al.: "Nothing is linear": characterizing the determinants and dynamics of CGMuse in older adults with type 1 diabetes. Diabetes Res Clin Pract 2023;196:110204
45. Akturk HK, Snell-Bergeon JK, Shah VN: Continuous Glucose Monitor with Siri Integration Improves Glycemic Control in Legally Blind Patients with Diabetes. Diabetes Technol Ther. 2021;23(1):81-83. doi: 10.1089/dia.2020.0320.
46. Bisio A, Gonder-Frederick L, McFadden R, et al.: The Impact of a Recently Approved Automated Insulin Delivery System on Glycemic, Sleep, and Psychosocial Outcomes in Older Adults With Type 1 Diabetes: A Pilot Study. J Diabetes Sci Technol. 2022;16(3):663-669. doi: 10.1177/1932296820986879



Diabetestechnologie: ein Update (Seite 175 – 180)
1. Braune K, Heinemann L: Innovationen im Bereich der Digitalisierung/Diabetes-Technologie. In: Kulzer B, Heinemann L (Hrsg.): Digitalisierungs- und Technologiereport Diabetes 2022. Kirchheim, Mainz, 2021. https://www.dut-report.de/2022/04/19/innovationen-im-bereich-der-digitalisierung-diabetestechnologie/ (letzter Zugriff: 15.06.2023)
2. Frielitz FS, Schlüter S, Heinemann L et al.: Der Auftragsverarbeitungsvertrag (AV-Vertrag): Relevanz und praktische Bedeutung für die Diabetologie. Diabetologie 2020; 15: 312-316. doi: 10.1055/a-1185-8945
3. Schlueter S, Deiss D, Gehr B et al. DDG-Praxisempfehlung Glukosemessung und -kontrolle bei Patienten mit Typ-1- oder Typ-2-Diabetes. Diabetologie. 2022;17:S111–S32. doi: 10.1055/a-1869-402
4. Pleus S, Baumstark A, Jendrike N et al.: System accuracy evaluation of 18 CE-marked current-generation blood glucose monitoring systems based on EN ISO 15197:2015. BMJ Open Diabetes Res Care 2020; 8: e001067. doi: 10.1136/bmjdrc-2019-001067
5. Pleus S, Baumstark A, Jendrike N et al.: Bewertung der Genauigkeit von Blutzuckermesssystemen, die von Krankenkassen zur Verordnung empfohlen werden, in Anlehnung an DIN EN ISO 15197: 2015. Diabetologie 2021; 16 (S 01): S80-S81
6. Pleus S, Baumstark A, Schauer S et al. User Performance Evaluation and System Accuracy Assessment of Four Blood Glucose Monitoring Systems With Color Coding of Measurement Results. J Diabetes Sci Technol. 2022 Nov 26:19322968221141926. doi: 10.1177/19322968221141926.
7. Bolla AS, Priefer R: Blood glucose monitoring – an overview of current and future non-invasive devices. Diabetes Metab Syndr 2020; 14: 739-751. doi: 10.1016/j.dsx.2020.05.016. Epub 2020 May 22
8. Purnamayanti NKD, Wicaksana AL: Digital health services among patients with diabetes during the COVID-19 pandemic: a scoping review. Indian J Endocrinol Metab 2021; 25 (2): 86-92. doi: 10.4103/ijem.ijem_153_21. Epub 2021 Sep 8
9. Freckmann G, Nichols JH, Hinzmann R et al.: Standardization process of continuous glucose monitoring: traceability and performance. Clin Chim Acta 2021; 515: 5-12. doi: 10.1016/j.cca.2020.12.025
10. Pleus S, Eichenlaub M, Gerber T et al. Improving the Bias of Comparator Methods in Analytical Performance Assessments Through Recalibration. Journal of Diabetes Science and Technology. 2022;0(0). doi:10.1177/19322968221133107
11. Freckmann G, Eichenlaub M, Waldenmaier D et al. Clinical performance evaluation of continuous glucose monitoring systems: A scoping review and recommendations for reporting. J Diabetes Sci Technol 2023 accepted (in print)
12. Eichenlaub M, Stephan P, Waldenmaier D et al. Continuous Glucose Deviation Interval and Variability Analysis (CG-DIVA): A Novel Approach for the Statistical Accuracy Assessment of Continuous Glucose Monitoring Systems. J Diabetes Sci Technol. 2022 Nov 3:19322968221134639. doi: 10.1177/19322968221134639. Epub ahead of print.
13. van den Boom L, Auzanneau M, Woelfle J, Sindichakis M, Herbst A, Meraner D, Hake K, Klinkert C, Gohlke B, Holl RW. Use of Continuous Glucose Monitoring in Pump Therapy Sensor Augmented Pump or Automated Insulin Delivery in Different Age Groups (0.5 to <26 Years) With Type 1 Diabetes From 2018 to 2021: Analysis of the German/Austrian/Swiss/Luxemburg DPV Registry. J Diabetes Sci Technol. 2023 Feb 25:19322968231156601. doi: 10.1177/19322968231156601.
14. Brazg R, Garg SK, Bhargava A et al.: Evaluation of extended infusion set performance in adults with type 1 diabetes: infusion set survival rate and glycemic outcomes from a pivotal trial. Diabetes Technol Ther 2022; 24: 535-543. doi: 10.1089/dia.2021.0540. Epub ahead of print
15. Thomas A: Algorithmen für die automatisierte Regulierung der Insulinabgabe. Diabetes Stoffw Herz 2021; 30: 118-127
16. Sherr JL, Heinemann L, Fleming GA, Bergenstal RM, Bruttomesso D, Hanaire H, Holl RW, Petrie JR, Peters AL, Evans M. Automated Insulin Delivery: Benefits, Challenges, and Recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetes Care. 2022 Dec 1;45(12):3058-3074. doi: 10.2337/dci22-0018. PMID: 36202061.
17. Biester T, Bratina N, Lange K et al.: Diabetesberatung zum Hybrid-AID-System bei Typ-1-Diabetes: neue Perspektiven und Therapieempfehlungen. Diabetologie 2020; 15: 147-156. doi: 10.1055/a-1079-4577
18. Deiss D, Waldenmaier D, Carstensen S et al.: Steckbriefe für Systeme zur Automatisierten Insulin-Dosierung. Diabetes Stoffw Herz 2022; 31: 36-4319. Ng SM: User-driven, open-source diabetes technology (special issue): Paediatric DIY APS. Diabetic Medicine 2022; 39: e14630
19. McLarney M, Litchman ML, Greenwood D, Drincic A. Navigating Diabetes Online Communities in Clinical Practice. J Diabetes Sci Technol. 2022 Jul;16(4):874-886. doi: 10.1177/19322968211069409. Epub 2022 Feb 5. PMID: 35125019; PMCID: PMC9264440
20. Braune K, Lal RA, Petruželková L et al.; OPEN International Healthcare Professional Network and OPEN Legal Advisory Group: Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals. Lancet Diabetes Endocrinol 2022; 10: 58-74. doi: 10.1016/S2213-8587(21)00267-9. Epub 2021 Nov 13
21. Bfarm Verzeichnis DiGAs https://diga.bfarm.de/de/verzeichnis (Zugriff: 15.6.2023)
22. Maahs D: Overview of continuous glucose monitoring technology and options – how far have we come? ADA Scientific Sessions 2019. San Francisco, 2019
23. Schlüter S, Freckmann G, Wernsing M et al.: Entwicklung und psychometrische Evaluation eines herstellerunabhängigen Wissenstests zum kontinuierlichen Glukosemonitoring in Echtzeit für insulinbehandelte Menschen mit Diabetes. Diabetologie 2022; 17: 129-135. doi: 10.1055/a-1492-5294
24. Schlüter S, Freckmann G, Heinemann L: Evaluierung des SPECTRUM-Schulungs- und Behandlungsprogramms zum rtCGM: eine multizentrische, prospektive Studie aus der Praxis bei 120 Erwachsenen mit Diabetes. Diabetes Stoffw Herz 2021; 30: 85-94
25. https://www.diabetes-technologie.de/steckbriefe-fuer-aid-systeme/



Modernes Glukose-Monitoring und AID-Systeme: Nutzen und Risiken (Seite 181 – 190)
1. Elbalshy M, Haszard J, Smith H, et al.: Effect of divergent continuous glucose monitoring technologies on glycaemic control in type 1 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials. Diabetic Medicine. 2022 Aug;39(8):e14854.
2. Di Molfetta S, Caruso I, Cignarelli A et al.: Professional continuous glucose monitoring in patients with diabetes mellitus: A systematic review and meta-analysis. Diabetes, Obesity and Metabolism 2013; 25(5), -1310.
3. Wang Y, Zou C, Na H, Zeng W et al.:Effect of different glucose monitoring methods on bold glucose control: a systematic review and meta-analysis. Computational and Mathematical Methods in Medicine 2022 Jun 18;2022.
4. Roussel R, Riveline J-P, Vicaut E, et. al.: Important Drop in Rate of Acute Diabetes Complications in People With Type 1 or Type 2 Diabetes After Initiation of Flash Glucose Monitoring in France: The RELIEF Study. Diabetes Care 2021; 44(6):1368–76.
5. Speight J, Choudhary P, Wilmot EG: Impact of glycaemic technologies on quality of life and related outcomes in adults with type 1 diabetes: a narrative review. Diabetic Medicine. 2023 Jan;40(1):e14944.
6. Kamusheva M, Tachkov K, Dimitrova M, et. al.: A Systematic Review of Collective Evidences Investigating the Effect of Diabetes Monitoring Systems and Their Application in Health Care. Front Endocrinol (Lausanne) 2021; 12(1):636959.
7. Lind M, Ólafsdóttir AF, Hirsch IB et al.: Sustained intensive treatment and long-term effects on HbA1c reduction (SILVER study) by CGM in people with type 1 diabetes treated with MDI. Diabetes Care. 2021 Jan 1;44(1):141-9.
8. Polonsky WH, Hessler D, Ruedy KJ, et. al.: The Impact of Continuous Glucose Monitoring on Markers of Quality of Life in Adults With Type 1 Diabetes: Further Findings From the DIAMOND Randomized Clinical Trial. Diabetes Care 2017; 40(6):736–41.
9. Verbist IL, Condon L.: Disordered eating behaviours, body image and social networking in a type 1 diabetes population. J Health Psychol. 2021;26(11):1791-1802.
10. Cameli N, Silvestri M, Mariano M et al.: Dermatitis, an Important Skin Reaction in Diabetes Device Users: A Systematic Review. Dermatitis. 2022;33(2):110-115.
11. Tanenbaum ML, Commissariat PV.: Experience with burdens of diabetes device use that affect uptake and optimal use in people with type 1 diabetes. Endocrine Connections. 2023 Oct 1;12(10).
12. Tanenbaum ML, Commissariat PV.: Barriers and Facilitators to Diabetes Device Adoption for People with Type 1 Diabetes. Current Diabetes Reports. 2022 Jul;22(7):291-9.
13. Pease A, Lo C, Earnest A, et. al.: The Efficacy of Technology in Type 1 Diabetes: A Systematic Review, Network Meta-analysis, and Narrative Synthesis. Diabetes Technol Ther 2020; 22(5):411–21.
14. Jiao X, Shen Y, Chen Y.: Better TIR, HbA1c, and less hypoglycemia in closed-loop insulin system in patients with type 1 diabetes: A meta-analysis. BMJ Open Diabetes Res Care 2022; 10(2).
15. McAulay V, Deary IJ, Frier BM.: Symptoms of hypoglycaemia in people with diabetes. Diabet. Med 2001; 18(9):690–705
16. Matejko B, Juza A, Kiec´-Wilk B, et. al.:Transitioning of People With Type 1 Diabetes From Multiple Daily Injections and Self-Monitoring of Blood Glucose Directly to MiniMed 780G Advanced Hybrid Closed-Loop System: A Two-Center, Ran-domized, Controlled Study. Diabetes Care 2022; 45(11):2628–35.
17. Wheeler BJ, Collyns OJ, Meier RA, et al.: Improved technology satisfaction and sleep quality with Medtronic MiniMed® Advanced Hybrid Closed-Loop delivery compared to predictive low glucose suspend in people with Type 1 Diabetes in a randomized crossover trial. Acta diabetologica. 2022 Jan;59(1):31-7.
18. Hood KK, Laffel LM, Danne T, et. al.: Lived Experience of Advanced Hybrid Closed-Loop Versus Hybrid Closed-Loop: Patient-Reported Outcomes and Perspectives. Diabetes Technol Ther 2021; 23(12):857–61
19. Pease A, Zomer E, Liew D et al.: Cost-Effectiveness Analysis of a Hybrid Closed-Loop System Versus Multiple Daily Injections and Capillary Glucose Testing for Adults with Type 1 Diabetes. Diabetes Technology & Therapeutics 2020; 11, 812-821.
20. Kulzer B, Heinemann L.: Digitalisierungs- und Technologie-Report 2023 (in press). MedTriX Group, Wiesbaden.
21. Gemeinsamer Bundesausschuss: Beschluss: DMP-Anforderungen-Richtlinie: Änderung Anlage 7 (DMP Diabetes mellitus Typ 1) und Anlage 8 (DMP Diabetes mellitus Typ 1 und Typ 2 – Dokumentation). https://www.g-ba.de/beschluesse/4142/ (letzter Zugriff: 16.09.2023).
22. Hermanns N, Ehrmann D, Schipfer M et al.:The impact of a structured education and treatment programme (FLASH) for people with diabetes using a flash sensor-based glucose monitoring system: results of a randomized controlled trial. Diabetes Research and Clinical Practice 2019; 150: 111-121.
23. Schlüter S, Freckmann G, Heinemann L et al.: Evaluation of the SPECTRUM training programme for real-time continuous glucose monitoring: a real-world multicentre prospective study in 120 adults with type 1 diabetes. Diabet Med 2021; 38: e14467.)



Psychosoziale Versorgung von Menschen mit Diabetes – aktuelle Aspekte (Seite 216 – 222)
1. Davies MJ, Aroda VR, Collins BS, et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45:2753-2786. doi: 10.2337/dci22-0034
2. Limbert C, Tinti D, Malik F, et al. ISPAD Clinical Practice Consensus Guidelines 2022: The delivery of ambulatory diabetes care to children and adolescents with diabetes. Pediatr Diabetes. 2022;23:1243-1269. doi: 10.1111/pedi.13417
3. de Wit M, Gajewska KA, Goethals ER, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Psychological care of children, adolescents and young adults with diabetes. Pediatr Diabetes. 2022;23:1373-1389. doi: 10.1111/pedi.13428
4. Gregory JW, Cameron FJ, Joshi K, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetes in adolescence. Pediatr Diabetes. 2022;23:857-871. doi: 10.1111/pedi.13408
5. Shah AS, Zeitler PS, Wong J, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 diabetes in children and adolescents. Pediatr Diabetes. 2022;23:872-902. doi: 10.1111/pedi.13409
6. Lindholm Olinder A, DeAbreu M, Greene S, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Diabetes education in children and adolescents. Pediatr Diabetes. 2022;23:1229-1242. doi: 10.1111/pedi.13418
7. Holder M, Kapellen T, Ziegler R, et al. Diagnosis, Therapy and Follow-Up of Diabetes Mellitus in Children and Adolescents. Exp Clin Endocrinol Diabetes. 2022;130(S 01):S49-S79. doi: 10.1055/a-1624-3388
8. ElSayed NA, Aleppo G, Aroda VR, et al. on behalf of the American Diabetes Association. 14. Children and Adolescents: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S230-S253. doi: 10.2337/dc23-S014
9. ElSayed NA, Aleppo G, Aroda VR, et al. on behalf of the American Diabetes Association. 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Supple 1):S68-S96. doi: 10.2337/dc23-S005
10. ElSayed NA, Aleppo G, Aroda VR, et al. on behalf of the American Diabetes Association. 13. Older Adults: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S216-S229. doi: 10.2337/dc23-S013
11. Deutsche Diabetes Gesellschaft (DDG) S3-Leitlinie Therapie des Typ-1-Diabetes, 2. Auflage AWMF-Registernummer: 057-013 www.awmf.org/leitlinien/detail/ll/057-013.html [cited: 2023-06-27]
12. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Typ-2-Diabetes – Teilpublikation der Langfassung, 2. Auflage. Version 1. 2021 [cited: 2023-06-27]. DOI: 10.6101/AZQ/000475
13. Zeyfang A, Wernecke J, Bahrmann A. Diabetes Mellitus at an Elderly Age. Exp Clin Endocrinol Diabetes. 2023;131(1-02):24-32. doi: 10.1055/a-1946-3728
14. Dehn-Hindenberg A, Saßmann H, Berndt V, et al. Long-term Occupational Consequences for Families of Children With Type 1 Diabetes: The Mothers Take the Burden. Diabetes Care. 2021;44:2656-2663. doi:10.2337/dc21-0740
15. Saßmann H, Kim-Dorner SJ, Berndt V, et al. Understanding Daily, Emotional, and Physical Burdens and Needs of Parents Caring for Children with Type 1 Diabetes. J Diabetes Res. 2022 Dec 13;2022:9604115. doi: 10.1155/2022/9604115
16. Lange K, Kordonouri O. Kinder mit Diabetes in der Schule. Diabetologe. 2021;17:463–474.
17. Moulton CD, Pickup JC, Ismail K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol. 2015;3:461-471. doi:10.1016/S2213-8587(15)00134-5
18. Beran M, Muzambi R, Geraets A, et al. The bidirectional longitudinal association between depressive symptoms and HbA1c: A systematic review and meta-analysis. Diabet Med. 2022;39:e14671. doi:10.1111/dme.14671
19. Pouwer F, Schram MT, Iversen MM, et al. How 25 years of psychosocial research has contributed to a better understanding of the links between depression and diabetes. Diabet Med. 2020;37:383-392. doi:10.1111/dme.14227
20. Bisio A, Brown SA, McFadden R, et al. Sleep and diabetes-specific psycho-behavioral outcomes of a new automated insulin delivery system in young children with type 1 diabetes and their parents. Pediatr Diabetes. 2021;22:495-502. doi:10.1111/pedi.13164
21. Phillip M, Nimri R, Bergenstal RM, et al. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr Rev. 2023;44:254-280. doi: 10.1210/endrev/bnac022
22. Chakrabarti A, Trawley S, Kubilay E, et al. Closed-Loop Insulin Delivery Effects on Glycemia During Sleep and Sleep Quality in Older Adults with Type 1 Diabetes: Results from the ORACL Trial. Diabetes Technol Ther. 2022;24:666-671. doi: 10.1089/dia.2022.0110.
23. Lange K, Kulzer B. Psychologische Aspekte der kontinuierlichen Glukosemessung (CGM). Diabetes Stoffw Herz. 2023; 32: in press
24. Wimberley T, Horsdal HT, Brikell I, et al. Temporally ordered associations between type 2 diabetes and brain disorders - a Danish register-based cohort study. BMC Psychiatry. 2022;22:573. doi: 10.1186/s12888-022-04163-z
25. Kordonouri O, Lange K, Biester T, et al. Determinants of glycaemic outcome in the current practice of care for young people up to 21 years old with type 1 diabetes under real-life conditions. Diabet Med. 2020;37:797-804. doi:10.1111/dme.14130
26. Nordentoft M, Rod NH, Bonde JP, et al. Effort-reward imbalance at work and risk of type 2 diabetes in a national sample of 50,552 workers in Denmark: A prospective study linking survey and register data. J Psychosom Res. 2020;128:109867. doi:10.1016/j.jpsychores.2019.109867
27. Gregg EW, Sophiea MK, Weldegiorgis M. Diabetes and COVID-19: Population Impact 18 Months Into the Pandemic. Diabetes Care. 2021;44:1916-1923. doi:10.2337/dci21-0001
28. Chobot A, Eckert AJ, Biester T, et al. Psychological Care for Children and Adolescents with Diabetes and Patient Outcomes: Results from the International Pediatric Registry SWEET. Pediatr Diabetes. 2023; Volume 2023, Article ID 8578231. doi.org/10.1155/2023/8578231
29. Besser REJ, Bell KJ, Couper JJ, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes. 2022;23:1175-1187. doi: 10.1111/pedi.13410.
30. Gemeinsamer Bundesausschuss. Richtlinie des Gemeinsamen Bundesausschusses über die 21. Änderung der DMP-Anforderungen-Richtlinie(DMP-A-RL): Änderung der Anlage 7 (DMP Diabetes mellitus Typ 1) und der Anlage 8 (DMP Diabetes mellitusTyp 1 und Typ 2 – Dokumentation). https://www.g-ba.de/downloads/40-268-6304/2020-01-16_DMP-A-RL_Aenderung-Anlage-7-8-DMP-Diabetes-mellitus_Servicedokument.pdf [cited: 2023-06-27]
31. Kempf K, Altpeter B, Berger J, et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care. 2017;40:863-871. doi:10.2337/dc17-0303
32. Gerlinger G, Mangiapane N, Sander J. Digitale Gesundheitsanwendungen (DiGA) in der ärztlichen und psychotherapeutischen Versorgung. Chancen und Herausforderungen aus Sicht der Leistungserbringer [Digital health applications (DiGA) in medical and psychotherapeutic care. Opportunities and challenges from the perspective of the healthcare providers]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2021;64:1213-1219. doi:10.1007/s00103-021-03408-8
33. Bundesanstalt für Arzneimittel und Medizinprodukte DiGA-Verzeichnis https://diga.bfarm.de/de [cited: 2023-06-27]
34. Bundespsychotherapeutenkammer. Musterweiterbildung für die Psychologischen Psychotherapeutinnen und Psychologischen Psychotherapeuten und Kinder- und Jugendlichenpsychotherapeutinnen: https://bptk.de/pressemitteilungen/muster-weiterbildungsordnung-fuer-psychotherapeutinnen-beschlossen/ [cited: 2023-06-27]



Aktuelle DPV-Registerdaten zur Versorgungslage von Menschen mit Diabetes (Seite 223 – 231)
1. Lanzinger S, Holl RW. Versorgungsforschung mit dem multizentrischen, prospektiven DPV-Register, in: Spitzenforschung in der Diabetologie. Innovationen und Auszeichnungen 2022, hrsg. von der ALPHA Informations-GmbH, Lampertheim 2022: 22-30
2. Karges B, Schwandt A, Heidtmann B, et al. Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 2017; 318:1358-1366.
3. Warncke K, Kummer S, Raile K, et al. Frequency and characteristics of MODY 1 (HNF4AMutation) and MODY 5 (HNF1BMutation): analysis from the DPV database. J Clin Endocrinol Metab 2019;104(3):845–855.
4. Warncke K, Eckert A, Kapellen T, et al. Clinical presentation and long-term outcome of patients with KCNJ11/ABCC8 variants: neonatal diabetes or MODY in the DPV registry from Germany and Austria. Pediatr Diabetes 2022;23(7):999-1008.
5. Tittel SR, Laubner K, Schmid SM, et al. Immune-checkpoint inhibitor-associated diabetes compared to other diabetes types - A prospective, matched control study. J Diabetes 2021;13(12):1007-1014.
6. van den Boom L, Auzanneau M, Wölfle J, et al. Use of continuous glucose monitoring in pump therapy sensor augmented pump or automated insulin delivery in different age groups (0.5 to <26 years) with type 1 diabetes from 2018 to 2021: Analysis of the German/Austrian/Swiss/Luxemburg DPV Registry. J Diabetes Sci Technol 2023: im Druck. doi: 10.1177/19322968231156601
7. Flury M, Eckert A, Datz N, et al. Entwicklung der Insulintherapie in der pädiatrischen Diabetologie - Auswertung des DPV-Registers von 1995-2021. Diabetologie und Stoffwechsel 2023;18(03):219-226.
8. Eckert A, Bramlage P, Danne T, et al. Verwendung von Insulinpräparaten – Auswertung des DPV Registers. Dtsch Arztebl Int 2022;119:649-650.
9. Gölz S, Eckert A, Wosch FJ, et al. Verordnung von Antidiabetika und glykämische Kontrolle bei Erwachsenen mit Diabetes mellitus Typ 2 im zeitlichen Verlauf: Auswertung aus dem DPV-Register aus den Jahren 2005 bis 2021. Diabetologie und Stoffwechsel 2023; doi: 10.1055/a-2025-0018 [im Druck]
10. Merger S, Eckert A, Bramlage P, et al. 100 Jahre Insulin: Wie hat sich die Insulintherapie bei Erwachsenen zwischen 2000 und 2021 verändert? Diabetologie und Stoffwechsel 2023; doi: 10.1055/a-2035-9351 [im Druck].
11. Karges B, Schwandt A, Heidtmann B, et al. Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 2017; 318:1358-1366.
12. Auzanneau M, Karges B, Neu A, et al. Use of insulin pump therapy is associated with reduced hospital-daysin the long-term: a real-world study of 48,756 pediatric patients with type 1 diabetes. Eur J Pediatr 2021; 180:597-606.
13. Kamrath C, Tittel SR, Kapellen TM, et al. Early versus delayed insulin pump therapy in children with newly diagnosed type 1 diabetes: results from the multicentre, prospective diabetes follow-up DPV registry. Lancet Child Adolesc Health 2021;5:17-25.
14. Karges B, Tittel SR, Bey A, et al. Continuous glucose monitoring versus blood glucose monitoring for risk of severe hypoglycaemia and diabetic ketoacidosis in children, adolescents, and young adults with type 1 diabetes: a population-based study. Lancet Diabetes Endocrinol 2023;11(5):314-323.
15. Grimsmann JM, von Sengbusch S, Freff M, et al. Glucose management indicator based on sensor data and laboratory HbA1c in people with type 1 diabetes from the DPV database: differences by sensor type. Diabetes Care 2020;43(9):e111-e112.
16. Karges B, Kapellen T, Wagner VM, et al. Glycated hemoglobin A1c as a risk factor for severe hypoglycemia in pediatric type 1 diabetes. Pediatr Diabetes 2017;18(1):51-58.
17. Lanzinger S, Best F, Bergmann T, et al. Dynamics of HbA1c, BMI and rates of severe hypoglycemia in 4,434 adults with type 1 or type 2 diabetes after initiation of continuous glucose monitoring. Diabetes Technol Ther 2022;24(10):763-769.
18. Hartmann B, Bramlage P, Lanzinger S, et al. Regional differences in type 2 diabetes treatment and outcomes in Germany—An analysis of the German DPV and DIVE registries. Diabetes Metab Res Rev 2018;34(8):e3049-3057.
19. Kamrath C, Mönkemöller K, Biester T, et al. Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID-19 pandemic in Germany. JAMA 2020;324(8):801–804.
20. Kamrath C, Rosenbauer J, Eckert AJ, et al. Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV registry. Diabetes Care 2022;45:1762–1771.
21. Tittel SR, Rosenbauer J, Kamrath C, et al. Did the COVID-19 lockdown affect the incidence of pediatric type 1 diabetes in Germany? Diabetes Care 2020;43(11):e172-e173.
22. Kamrath C, Rosenbauer J, Eckert A, et al. Incidence of type 1 diabetes in children and adolescents during the covid-19 pandemic in Germany: Results from the DPV registry. Diabetes Care 2022;45(8):1762-1771.
23. Bächle C, Eckert A, Kamrath C, et al. Incidence and presentation of new-onset type 1 diabetes in children and adolescents from Germany during the Covid-19 pandemic 2020 and 2021: current data from the DPV registry. Diabetes Res Clin Pract 2023; doi: 10.1016/j.diabres.2023.110559 [im Druck]
24. Hammersen J, Reschke F, Tittel SR, et al. Metabolic control during the SARS-CoV-2 lockdown in a largeGerman cohort of pediatric patients with type 1 diabetes: Results from the DPV initiative. Pediatr Diabetes 2022;23:351-361.
25. Hartmann B, Tittel SR, Femerling M, et al. COVID-19 Lockdown Periods in 2020: Good Maintenance of Metabolic Control in Adults with Type 1 and Type 2 Diabetes. Exp Clin Endocrinol Diabetes 2022; doi: 10.1055/a-1743-2537.
26. Kapellen T, Tittel SR, Burmester H, et al. Entwicklung der Rehabilitation von Kindern und Jugendlichen mit Diabetes während der Corona-Pandemie im Vergleich zum Vor-Pandemiejahr. Diabetologie und Stoffwechsel 2023;18(03):213-218.
27. Denzer C, Rosenbauer J, Klose D, et al. Is COVID-19 to blame? Trends of incidence and sex ratio in youth-onset type 2 diabetes in Germany. Diabetes Care 2023; doi: 10.2337/dc22-2257 [Epub]
28. Tittel SR, Kulzer B, Warschburger P, et al. WHO-5 well-being questionnaire in type 1 diabetes: screening for depression in pediatric and young adult subjects. J Pediatr Endocrinol Metab 2023;36(4):384-392.
29. Lunkeneimer F, Eckert AJ, Hilgard D, et al. Posttraumatic stress disorder and diabetes-related outcomes in patients with type-1-diabetes. Sci Rep 2023 27;13(1):1556.
30. Bächle C, Scheuing N, Kruse J, et al. Gestörtes Essverhalten und Essstörungen bei Typ-1-Diabetes: Ein Zusammenspiel mit Relevanz für die Diabetestherapie? Diabetes, Stoffwechsel und Herz 2014;23(3):156-160.
31. Hilgard D, Konrad K, Meusers M, et al. Comorbidity of attention deficit hyperactivity disorder and type 1 diabetes in children and adolescents: Analysis based on the multicentre DPV registry. Pediatr Diabetes 2016;18(8):706-713.
32. Eckert A, Domhardt M, Reinauer C, et al. Non-suicidal self-injury in adolescents and young adults with type 1 diabetes: clinical characteristics from a German diabetes-patient registry (DPV). Psychiatry Res 2021;297:113733. doi: 10.1016/j.psychres.2021.113733.
33. Galler A, Hilgard D, Bollow E, et al. Psychological care in children and adolescents with type 1 diabetes in a real-world setting and associations with metabolic control. Pediatr Diabetes 2020; doi: 10.1111/pedi.13065.
34. Köstner K, Geirhos A, Ranz R, et al. Angst und Depression bei Typ-1-Diabetes – Erste Ergebnisse des Screenings auf psychische Komorbiditäten bei Jugendlichen und jungen Erwachsenen im Rahmen des COACH-Konsortiums. Diabetologie & Stoffwechsel 2022;17(03):197-207.



Gesundheitsökonomische Aspekte des Diabetes (Seite 233 – 240)
1. Köster I, Schubert I, Huppertz E: Fortschreibung der KoDiM-Studie: Kosten des Diabetes mellitus 2000–2009. Dtsch Med Wochenschr 2012; 137: 1013-1016
2. Jacobs E, Hoyer A, Brinks R et al.: Healthcare costs of type 2 diabetes in Germany. Diabet Med 2017; 34: 855-861
3. König H, Rommel A, Baumert J et al.: Excess costs of type 2 diabetes and their sociodemographic and clinical determinants: a cross-sectional study using data from the German Health Interview and Examination Survey for Adults (DEGS1). BMJ Open 2021; 11: e043944
4. Kähm K, Stark R, Laxy M et al.: Assessment of excess medical costs for persons with type 2 diabetes according to age groups: an analysis of German health insurance claims data. Diabet Med 2020; 37: 1752-1758
5. Lange L, Pimperl A, Schulte T et al.: Hochkostenversicherte in Deutschland: Leistungs- und Kostenprofile. Z Evid Fortbild Qual Gesundhwes 2020; 153-154: 76-83
6. Gabler M, Picker N, Geier S et al.: Real-world clinical outcomes and costs in type 2 diabetes mellitus patients after initiation of insulin therapy: a German claims data analysis. Diabetes Res Clin Pract 2021; 174: 108734
7. Kähm K, Laxy M, Schneider U et al.: Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care 2018; 41: 971-978
8. Huang CJ, Hsieh HM, Chiu HC et al.: Health care utilization and expenditures of patients with diabetes comorbid with depression disorder: a national population-based cohort study. Psychiatry Investig 2017; 14: 770-778
9. Egede LE, Bishu KG, Walker RJ, Dismuke CE: Impact of diagnosed depression on healthcare costs in adults with and without diabetes: United States, 2004-2011. J Affect Disord 2016; 195: 119-126
10. Lehnert T, Konnopka A, Riedel-Heller S, König HH: Diabetes mellitus and comorbid depression: economic findings from a systematic literature review. Psychiatr Prax 2011; 38: 369-375
11. Brüne M, Linnenkamp U, Andrich S et al.: Health care use and costs in individuals with diabetes with and without comorbid depression in Germany: results of the cross-sectional DiaDec study. Diabetes Care 2021; 44: 407-415
12. Egede LE, Walker RJ, Bishu K, Dismuke CE: Trends in costs of depression in adults with diabetes in the United States: Medical Expenditure Panel Survey, 2004-2011. J Gen Intern Med 2016; 31: 615-622
13. Icks A, Claessen H, Strassburger K et al.: Patient time costs attributable to healthcare use in diabetes: results from the population-based KORA survey in Germany. Diabet Med 2013; 30: 1245-1249
14. Icks A, Haastert B, Arend W et al.: Time spent on self management by people with diabetes: results from the population based KORA survey in Germany. Diabet Med 2019; 36: 970-981
15. Chernyak N, Jülich F, Kasperidus J et al.: Time cost of diabetes: development of a questionnaire to assess time spent on diabetes self-care. J Diab Comp 2017; 31: 260–266.
16. Ulrich S, Holle R, Wacker M et al.: Cost burden of type 2 diabetes in Germany: results from the population-based KORA studies. BMJ Open 2016; 6: e012527
17. Icks A, Haastert B, Arend W et al.: Patient time costs due to self-management in diabetes may be as high as direct medical costs: results from the population-based KORA survey FF4 in Germany. Diabet Med 2020; 37: 895-897
18. Montalbo J, Ogurtsova K, Vomhof M, Icks A: Modellbasierte gesundheitsökonomische Evaluation der Diabetesprävention – Typ-2-Diabetes. Diabetologe 2020; 16: 220-225
19. Schöffski O, Graf von der Schulenburg JM (Hrsg.): Gesundheitsökonomische Evaluationen. Springer, Heidelberg, Dordrecht, London, New York, 2012
20. Tönnies T, Hoyer A, Brinks R: Productivity-adjusted life years lost due to type 2 diabetes in Germany in 2020 and 2040. Diabetologia 2021; 64: 1288-1297
21. Bächle CC, Holl RW, Straßburger K et al.: Costs of paediatric diabetes care in Germany: current situation and comparison with the year 2000. Diabet Med 2012; 29: 1327-1334
22. Dehn-Hindenberg A, Saßmann H, Berndt V et al.: Long-term occupational consequences for families of children with type 1 diabetes: the mothers take the burden. Diabetes Care 2021; 44: 2656-2663
23. International Diabetes Federation: Diabetes Atlas. 10th Edition. International Diabetes Federation, Brussels, 2021
24. da Rocha Fernandes J, Ogurtsova K, Linnenkamp U et al.: IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract 2016; 117: 48-54
25. Bain, S. C., Czernichow, S., Bøgelund, M., Madsen, M. E., Yssing, C., McMillan, A. C., Hvid, C., Hettiarachchige, N., & Panton, U. H. (2021). Costs of COVID-19 pandemic associated with diabetes in Europe: A health care cost model. Current Medical Research and Opinion, 37(1), 27–36. https://doi.org/10.1080/03007995.2020.1862775



Das Deutsche Zentrum für Diabetesforschung – Aktuelles aus der Wissenschaft (Seite 241 – 247)
1. Wittenbecher C, Cuadrat R, Johnston L et al.: Nat Commun. 2022 Feb 17;13(1):936. doi: 10.1038/s41467-022-28496-1
2. Deutsches Zentrum für Diabetesforschung, o.D.: https://www.dzd-ev.de/forschung/multicenterstudien/ifis/index.html (letzter Abruf am 30. Juli 2023)
3. Dreher S, Irmler M, Pivovarova-Ramich O et al.: Int J Obes (Lond). 2023 Apr;47(4):313-324. doi: 10.1038/s41366-023-01271-y
4. Lean ME, Leslie WS, Barnes AC et al.: Lancet 2018 Feb 10;391(10120):541-551. doi: 10.1016/S0140-6736(17)33102-1
5. Sandfort A, Jumpertz-von Schwartzenberg R, Birkenfeld AL et al.: Lancet Diab Endocrinol. Accepted.
6. Wagner R, Heni M, Tabák AG et al.: Nat Med. 2021 Jan;27(1):49-57. doi: 10.1038/s41591-020-1116-9
7. https://diabetescalculator.ddz.de/diabetescluster/
8. Stefan N, Cusi C: Lancet Diabetes Endocrinol. 2022 Apr;10(4):284-296. doi: 10.1016/S2213-8587(22)00003-1
9. Deutsches Zentrum für Diabetesforschung, o. D.: https://www.dzd-ev.de/forschung/multicenterstudien/combat-t2-nash/index.html (letzter Abruf am 31. Juli 2023)
10. 66. Deutscher Kongress für Endokrinologie, 7. Juni 2023: https://apps.m-anage.com/dge2023/de-DE/pag/presentation/633187 (letzter Abruf am 31. Juli 2023)
11. Jastreboff AM, Aronne LJ, Ahmad NN et al.: N Engl J Med. 2022 Jul 21;387(3):205-216. doi: 10.1056/NEJMoa2206038
12. Jastreboff AM, Kaplan LM, Frías JP et al.: N Engl J Med. 2023 Jun 26. doi: 10.1056/NEJMoa2301972
13. Fr1da-plus-Studie, o.D.: https://www.typ1diabetes-frueherkennung.de/ (letzter Abruf am 3. August 2023)
14. Kick K, Teichgräber FJ, Achenbach P: Diabetes aktuell 2023;21(04):166-170. doi: 10.1055/a-2093-9851
15. Herold KC, Bundy BN, Long A et al.: N Engl J Med. 2019 Aug 15;381(7):603-613. doi: 10.1056/NEJMoa1902226.
16. FDA (online) 17. November 2022: https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-can-delay-onset-type-1-diabetes (letzter Abruf am 31. Juli 2023)



Unverzichtbare Handlungsfelder aus Sicht der Menschen mit Diabetes – Probleme, Lösungen, Erfolge (Seite 261 – 267)
1. https://gf-bmbf.de/leitlinie-i-der-mensch-im-mittelpunkt.html
2. Kulzer,B.,Kröger,J.: Digitale Prävention des Typ 2 Diabetes in DUT Report 2021, S. 190-201, Hrsg B. Kulzer und L. Heinemann 2021, Kirchheim Verlag
3. https://www.diabetologie-online.de/a/abbott-frankreich-erweitert-die-kostenuebernahme-fuer-freestyle-libre-system-2488055
4. https://www.zm-online.de/news/detail/zuckersteuer-mit-weniger-adipositas-bei-maedchen-assoziiert
5. https://www.dialink-diabetes.de/



Kinder im Fokus der DDG (Seite 275 – 279)
1. Neu A, Bürger-Büsing J, Danne T et al.: Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kinder- und Jugendalter – S3-Leitlinie der Deutschen Diabetes Gesellschaft (DDG). Diabetologie und Stoffwechsel 2016; 11, 35-94.
2. Mönkemöller K, Kamrath C, Holl RW.: Ketoazidose bei Manifestation des Typ 1 Diabetes bei Kindern und Jugendlichen während der COVID-19-Pandemie. Deutscher Gesundheitsbericht Diabetes 2022, Kirchheim-Verlag, 71-76.
3. Kamrath C, Rosenbauer J, Eckert AJ et al.: Incidence of type 1 diabetes in children and adolescence during the COVID-19 pandemic in Germany: results from the DPV-registry. Diabetes Care 2022; 45(8):1762-1771.
4. Cherubini V, Marino M, Carle F, Zagaroli L, Bowers R, Gesuita R.: Effectiveness of ketoacidosis prevention campaigns at diagnosis of type 1 diabetes in children: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2021, 175:108838.
5. Holder M, Ehehalt S.: Significant reduction of ketoacidosis at diabetes onset in children and adolescents with type 1 diabetes – The Stuttgart Diabetes Awareness Campaign, Germany. Pediatric Diabetes 2020; 21:1227-31.
6. Dehn-Hindenberg A, Saßmann H, Berndt V, Biester T, Heidtmann B, Jorch N, Kim-Dorner SJ, Konrad K, Lilienthal E, Nellen-Hellmuth N, Neu A, Ziegler R, Lange K.: Long-term Occupational Consequences for Families of Children With Type 1 Diabetes: The Mothers Take the Burden. Diabetes Care 2021; 44:2656-2663.
7. Maulbecker-Armstrong C, Schulenberg D, Binder D.: Gutachterliche Stellungnahme im Rahmen von Projektphase IV des länderübergreifenden Modellprojektes "Schulgesundheitsfachkräfte" in Brandenburg und Hessen (2020).
8. Heinrich M, Boß K, Wendenburg J, Hilgard D, v Sengbusch S, Kapellen TM, für die AG Inklusion der Arbeitsgemeinschaft Pädiatrische Diabetologie.: Unzureichende Versorgung gefährdet Inklusion von Kindern mit Diabetes mellitus Typ 1. Diabetologie und Stoffwechsel 2019; 14(05):380-387.



Werbung für Ungesundes wirksam eindämmen! (Seite 280 – 284)
1. Hastings G et al. (2003). Review of Research on the Effects of Food Promotion to Children – Final Report. Report to the Food Standards Agency. Glasgow, University of Strathclyde, Centre for Social Marketing.
2. Cairns, Georgina, Angus, Kathryn, Hastings, Gerard & World Health Organization. (‎2009)‎. The extent, nature and effects of food promotion to children : a review of the evidence to December 2008 / by Georgina Cairns, Kathryn Angus and Gerard Hastings. World Health Organization. https://apps.who.int/iris/handle/10665/44237
3. Smith R, Kelly B, Yeatman H, Boyland E. Food Marketing Influences Children‘s Attitudes, Preferences and Consumption: A Systematic Critical Review. Nutrients. 2019 Apr 18;11(4):875. doi: 10.3390/nu11040875. PMID: 31003489; PMCID: PMC6520952.
4. Russell SJ, Croker H, Viner RM. The effect of screen advertising on children‘s dietary intake: A systematic review and meta-analysis. Obes Rev. 2019 Apr;20(4):554-568. doi: 10.1111/obr.12812. Epub 2018 Dec 21. PMID: 30576057; PMCID: PMC6446725.
5. Boyland E, McGale L, Maden M, Hounsome J, Boland A, Angus K, Jones A. Association of Food and Nonalcoholic Beverage Marketing With Children and Adolescents‘ Eating Behaviors and Health: A Systematic Review and Meta-analysis. JAMA Pediatr. 2022 Jul 1;176(7):e221037. doi: 10.1001/jamapediatrics.2022.1037. Epub 2022 Jul 5. PMID: 35499839; PMCID: PMC9062773.
6. Lobstein T, Neveux M. A review of systematic reviews of the impact on children of three population-wide policies. 2021
7. Powell LM, Wada R, Khan T, and Emery SL. Food and beverage television advertising exposure and youth consumption, body mass index and adiposity outcomes. Canadian Journal of Economics, 2017; 50(2):345-64.
8. Food marketing exposure and power and their associations with food-related attitudes, beliefs, and behaviours: a narrative review. CC BY-NC-SA 3.0 IGO Geneva: World Health Organization, 2022. Available from: https://apps.who.int/iris/bitstream/handle/10665/
9. Pressekonferenz Bundesminister Özdemir am 27.02.2023: Mehr Kinderschutz in der Werbung: Klare Regeln zu an Kinder gerichteter Lebensmittelwerbung; abrufbar unter: https://www.bmel.de/SharedDocs/Videos/DE/Ernaehrung/230227-pk-kinderschutz-werbung.html
10. Koalitionsvertrag zwischen SPD, Bündnis 90/Die Grünen, FDP, 2021. Mehr Fortschritt Wagen
11. https://www.foodwatch.org/de/presse-statement-zu-werbeschranken-fuer-ungesunde-lebensmittel-ein-meilenstein-im-kampf-gegen-fehlernaehrung
12. Vgl. https://www.globalfoodresearchprogram.org/wp-content/uploads/2022/05/Marketing_maps_upload.pdf#page=2 sowie alternative auch World Cancer Research Fund. NOURISHING framework database. Abgerufen am 30.01.2023: https://www.wcrf.org/policy/policy-databases/nourishing-framework/
13. Vgl. AOK BV, DANK, vzbv (2022). Policy Brief "Kindermarketing für Lebensmittel | Vorschlag zur Ausgestaltung der Werbebeschränkung". Abrufbar unter: https://www.dank-allianz.de/files/content/projekte/kindermarketing/2022-02-10_AOK_vzbv_DANK_policy-brief-kindermarketing_FINAL.pdf
14. Vgl. https://adipositas-gesellschaft.de/breites-bundnis-um-starkoch-jamie-oliver-fordert-umfassenden-schutz-von-kindern-gegen-junkfood-werbung/
15. https://www.lebensmittelverband.de/de/presse/pressemitteilungen/20230616-werbeverbote-fuer-lebensmittel-wissenschaftliche-grundlage-fehlt
16. https://eu-pledge.eu/
17. https://www.bve-online.de/themen/die-ernaehrungsindustrie/warum-ein-werbeverbot-allen-schadet
18. https://www.dank-allianz.de/pressemeldung/faktencheck-zu-aussagen-der-ernaehrungsindustrie-wissenschaftsbuendnis-dank-diese-kampagne-ist-irrefuehrend-auf-allen-ebenen.html
19. https://www.dank-allianz.de/pressemeldung/studie-mit-660-produkten-who-naehrwertmodell-ist-praxistauglich-fuer-werberegeln-gesundheitsbuendnis-dank-aussagen-der-werbeindustrie-nicht-haltbar.html
20. https://www.dank-allianz.de/pressemeldung/faktencheck-zu-aussagen-der-ernaehrungsindustrie-wissenschaftsbuendnis-dank-diese-kampagne-ist-irrefuehrend-auf-allen-ebenen.html
21. https://www.zuckerverbaende.de/schmeckt-richtig/gesundheitsfaktor-bewegung/
22. Tobacco Industry Research Committee, Tobacco Tactics, updated 07 February 2020, accessed 13 July 2023.
23. https://www.bild.de/politik/inland/politik-inland/fdp-rebelliert-gegen-oezdemirs-werbeverbot-quark-quatsch-84324618.bild.html
24. https://rp-online.de/politik/deutschland/interview-mit-cem-oezdemir-so-weit-wurde-das-werbeverbot-veraendert_aid-92583471
25. https://taz.de/Minister-Oezdemir-bietet-Kompromiss-an/!5940124/
26. https://www.bild.de/politik/inland/politik-inland/wer-soll-das-noch-verstehen-oezdemirs-neuer-werbeverbot-quark-fuer-suessigkeiten-84469472.bild.html
27. https://www.daserste.de/information/politik-weltgeschehen/morgenmagazin/berichte-und-interviews/Carina-Konrad-102.html
28. https://www.dank-allianz.de/pressemeldung/werbeschranken-fuer-ungesunde-lebensmittel-60-organisationen-fordern-unterstuetzung-von-fdp-parteichef-christian-lindner-fuer-kinderschutz-gesetz.html



Diabetes mellitus in Deutschland – Politische Handlungsfelder 2023/2024 (Seite 285 – 291)
1. Schumm-Draeger P, Kapitza T, Mann K, Fölsch UR, Müller-Wieland D. Ökonomisierung in der Medizin - Rückhalt für ärztliches Handeln. Dtsch Ärztebl. 2017; 114: A2238-40. https://www.deutsche-diabetes-gesellschaft.de/politik/projekte/klinik-codex (cited 24.07.23)
2. Deutsche Diabetes Gesellschaft (DDG), Empfehlungen der DDG zur Nationalen Diabetesstrategie: Welche konkreten Maßnahmen müssen nun folgen? Politische_Empfehlungen_DDG_2021.pdf. https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen (cited 24.07.23)
3. Deutsche Diabetes Gesellschaft (DDG), Deutsches Zentrum für Diabetesforschung (DZD), Deutsche Gesellschaft für Endokrinologie (DGE). Gemeinsame Stellungnahme DDG / DZD / DGE zur Versorgung von Menschen mit Diabetes und endokrinen Erkrankungen. Ausbildungskapazitäten im Bereich Diabetologie und Endokrinologie müssen ausgebaut werden. Positionspapier_Lehrstuehle_DDG_DZD_DGE.pdf https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen (cited 24.07.23)
4. Wissenschaftsrat. Empfehlungen zur künftigen Rolle der Universitätsmedizin zwischen Wissenschafts- und Gesundheitssystem (Drs. 9192-21). Juli 2021. https://wissenschaftsrat.de/download/2021/9121-21.html (cited 24.07.23)
5. Auzanneau M, Fritsche A, Icks A, Siegel E, Kilian R, Karges W, Lanzinger S, Holl RW: Diabetes in the hospital—a nationwide analysis of all hospitalized cases in Germany with and without diabetes, 2015–2017. Dtsch Arztebl Int 2021; 118: 407–12 DOI: 10.3238/arztebl.m2021.0151
6. Fritsche A (2017). Diabetes mellitus in der Klinik: Mehr Strukturen schaffen. Deutsches Ärzteblatt, Perspektiven der Diabetologie 2;16-18
7. Diabetes Zeitung. DDG Zertifikat wirkt positiv. Patientenbefragung zum Klinikaufenthalt zeigt deutliche Unterschiede. https://www.ddg.info/diabetes-zeitung/ddg-zertifikat-wirkt-positiv (cited 24.07.2023)
8. DDG Forderungen zur Reform des Krankenhaussystems. https://www.ddg.info/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen (cited 24.07.23)
9. Ziegler R, Neu A: Diabetes in childhood and adolescence – a guideline-based approach to diagnosis, treatment, and follow-up. Dtsch Ärztebl Int 2018; 115: 146-46. DOI: 10.3238/arztebl.2018.0146
10. Gallwitz B, Neu A, Kellerer M, Fritsche A, Bitzer B, Müller-Wieland D, Vité S. Diabetes mellitus in Deutschland – Politische Handlungsfelder 2022/23. In: Gesundheitsbericht Diabetes 2023, Kirchheim Vlg., Mainz 2022, S. 261-266
11. Müller-Wieland D, Ickrath M für die Kommission Digitalisierung Kodex der DDG zur Digitalisierung 2023. https://www.ddg.info/politik/projekte/code-of-conduct (cited 24.07.23)