Der „Deutsche Gesundheitsbericht Diabetes“ wird jedes Jahr neu aufgelegt und beinhaltet die aktuellsten Zahlen und Entwicklungen zur Erkrankung Diabetes mellitus in Deutschland. Er wird in Zusammenarbeit mit zahlreichen Fachexperten erstellt und von der Deutschen Diabetes Gesellschaft herausgegeben.

Deutscher Gesundheitsbericht Diabetes 2021 – Literaturlisten

Klicken Sie auf eine Kapitelüberschrift, um die jeweilige Literaturliste einzusehen:


Epidemiologie des Diabetes in Deutschland (S. 9-16)
  1. Tönnies T, Rockl S, Hoyer A, Heidemann C, Baumert J, Du Y, et al. Projected number of people with diagnosed Type 2 diabetes in Germany in 2040. Diabet Med. 2019.
  2. Rosenbauer J, Neu A, Rothe U, Seufert J, Holl RW. Diabetestypen sind nicht auf Altersgruppen beschränkt: Typ-1-Diabetes bei Erwachsenen und Typ-2-Diabetes bei Kindern und Jugendlichen. Journal of Health Monitoring. 2019;4 (2).
  3. Heidemann C, Scheidt-Nave C. Prävalenz, Inzidenz und Mortalität von Diabetes mellitus bei Erwachsenen in Deutschland – Bestandsaufnahme zur Diabetes-Surveillance. Journal of Health Monitoring 2017; 2:105-129.
  4. Jacobs E, Rathmann W, Tönnies T, Arendt D, Marchowez M, Veith L, et al. Age at diagnosis of Type 2 diabetes in Germany: a nationwide analysis based on claims data from 69 million people. Diabet Med; 0:10.1111/dme.14100.
  5. Jacobs E, Rathmann W. Epidemiologie des Diabetes. Diabetologie und Stoffwechsel 2017; 12:437-446.
  6. Goffrier B, Schulz M, Bätzing-Feigenbaum J. Administrative Prävalenzen und Inzidenzen des Diabetes mellitus von 2009 bis 2015. Versorgungsatlas-Bericht 2017; 17/03:10.20364/VA-20317.20303.
  7. Heidemann C, Du Y, Paprott R, Haftenberger M, Rathmann W, Scheidt-Nave C. Temporal changes in the prevalence of diagnosed diabetes, undiagnosed diabetes and prediabetes: findings from the German Health Interview and Examination Surveys in 1997–1999 and 2008–2011. Diabet Med 2016; 33:1406-1414.
  8. Boehme MW, Buechele G, Frankenhauser-Mannuss J, Mueller J, Lump D, Boehm BO, et al. Prevalence, incidence and concomitant co-morbidities of type 2 diabetes mellitus in South Western Germany--a retrospective cohort and case control study in claims data of a large statutory health insurance. BMC Public Health 2015; 15:855.
  9. National Diabetes-Surveillance at the Robert Koch Institute. Diabetes in Germany – National Diabetes-Surveillance Report 2019. Berlin, Germany: Robert Koch Institute 2019: http://diabsurv.rki.de accessed at 01 April 2020.
  10. Carstensen B, Kristensen JK, Ottosen P, Borch-Johnsen K, Steering Group of the National Diabetes Register. The Danish National Diabetes Register: trends in incidence, prevalence and mortality. Diabetologia 2008; 51:2187-2196.
  11. Carstensen B, Rønn PF, Jørgensen ME. Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996–2016. BMJ Open Diabetes Res Care 2020; 8:e001071.
  12. Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, et al. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet 2018; 391:2430-2440.
  13. Rathmann W, Haastert B, Icks A, Löwel H, Meisinger C, Holle R, et al. High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000. Diabetologia 2003; 46:182-189.
  14. Meisinger C, Strassburger K, Heier M, Thorand B, Baumeister SE, Giani G, et al. Prevalence of undiagnosed diabetes and impaired glucose regulation in 35-59-year-old individuals in Southern Germany: the KORA F4 Study. Diabet Med 2010; 27:360-362.
  15. Graf C. Regionale Prävalenzendes Diabetes mellitus in Deutschland. 2018: https://www.barmer.de/blob/171334/86ebe71e4fe3368efa96c23637c8ea64/data/dl-diabetes-atlas.pdf accessed at 16. Juni 2020.
  16. Kauhl B, Pieper J, Schweikart J, Keste A, Moskwyn M. Die räumliche Verbreitung des Typ 2 Diabetes Mellitus in Berlin – Die Anwendung einer geografisch gewichteten Regressionsanalyse zur Identifikation ortsspezifischer Risikogruppen. Gesundheitswesen 2018; 80:S64-S70.
  17. Kauhl B, Schweikart J, Krafft T, Keste A, Moskwyn M. Do the risk factors for type 2 diabetes mellitus vary by location? A spatial analysis of health insurance claims in Northeastern Germany using kernel density estimation and geographically weighted regression. Int J Health Geogr 2016; 15:38.
  18. Schmidt C, Reitzle L, Dreß J, Rommel A, Ziese T, Heidemann C. Prävalenz und Inzidenz des dokumentierten Diabetes mellitus – Referenzauswertung für die Diabetes-Surveillance auf Basis von Daten aller gesetzlich Krankenversicherten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:93-102.
  19. Heidemann C, Kuhnert R, Born S, Scheidt-Nave C. 12-Monats-Prävalenz des bekannten Diabetes mellitus in Deutschland. Journal of Health Monitoring 2017; 2:48-56.
  20. Stöckl D, Rückert-Eheberg I-M, Heier M, Peters A, Schipf S, Krabbe C, et al. Regional Variability of Lifestyle Factors and Hypertension with Prediabetes and Newly Diagnosed Type 2 Diabetes Mellitus: The Population-Based KORA-F4 and SHIP-TREND Studies in Germany. PLOS ONE 2016; 11:e0156736.
  21. Tamayo T, Schipf S, Meisinger C, Schunk M, Maier W, Herder C, et al. Regional Differences of Undiagnosed Type 2 Diabetes and Prediabetes Prevalence Are Not Explained by Known Risk Factors. PLOS ONE 2014; 9:e113154.
  22. Maier W, Holle R, Hunger M, Peters A, Meisinger C, Greiser KH, et al. The impact of regional deprivation and individual socio-economic status on the prevalence of Type 2 diabetes in Germany. A pooled analysis of five population-based studies. Diabet Med 2013; 30:e78-86.
  23. Kivimäki M, Vahtera J, Tabák AG, Halonen JI, Vineis P, Pentti J, et al. Neighbourhood socioeconomic disadvantage, risk factors, and diabetes from childhood to middle age in the Young Finns Study: a cohort study. Lancet Public Health 2018; 3:e365-e373.
  24. Castillo-Reinado K, Maier W, Holle R, Stahl-Pehe A, Baechle C, Kuss O, et al. Associations of area deprivation and urban/rural traits with the incidence of type 1 diabetes: analysis at the municipality level in North Rhine-Westphalia, Germany. Diabet Med; 0:10.1111/dme.14258.
  25. Kroll LE, Schumann M, Hoebel J, Lampert T. Regionale Unterschiede in der Gesundheit – Entwicklung eines sozioökonomischen Deprivationsindex für Deutschland. Journal of Health Monitoring 2017; 2:103-120.
  26. Greiser E, Glaeske G. Soziale und ökonomische Folgen nächtlichen Fluglärms im Umfeld des Flughafens Frankfurt/Main. Gesundheitswesen 2013; 75:127-133.
  27. Krämer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U, et al. Traffic-Related Air Pollution and Incident Type 2 Diabetes: Results from the SALIA Cohort Study. Environ Health Perspect 2010; 118:1273-1279.
  28. Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health 2018; 15:78.
  29. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, et al. Association between Ambient Air Pollution and Diabetes Mellitus in Europe and North America: Systematic Review and Meta-Analysis. Environ Health Perspect 2015; 123:381-389.
  30. Paquet C, Coffee NT, Haren MT, Howard NJ, Adams RJ, Taylor AW, et al. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort. Health & Place 2014; 28:173-176.
  31. Lucht SA, Hennig F, Matthiessen C, Ohlwein S, Icks A, Moebus S, et al. Air Pollution and Glucose Metabolism: An Analysis in Non-Diabetic Participants of the Heinz Nixdorf Recall Study. Environ Health Perspect 2018; 126:047001.
  32. den Braver NR, Lakerveld J, Rutters F, Schoonmade LJ, Brug J, Beulens JWJ. Built environmental characteristics and diabetes: a systematic review and meta-analysis. BMC Medicine 2018; 16:12.
  33. Tamayo T, Brinks R, Hoyer A, Kuß O, Rathmann W. The Prevalence and Incidence of Diabetes in Germany: An Analysis of Statutory Health Insurance Data on 65 Million Individuals From the Years 2009 and 2010. Dtsch Arztebl Int 2016; 113:177-182.
  34. Jacobs E, Hoyer A, Brinks R, Kuss O, Rathmann W. Burden of Mortality Attributable to Diagnosed Diabetes: A Nationwide Analysis Based on Claims Data From 65 Million People in Germany. Diabetes Care 2017; 40:1703-1709.
  35. Lind M, Garcia-Rodriguez LA, Booth GL, Cea-Soriano L, Shah BR, Ekeroth G, et al. Mortality trends in patients with and without diabetes in Ontario, Canada and the UK from 1996 to 2009: a population-based study. Diabetologia 2013; 56:2601-2608.
  36. The Emerging Risk Factors Collaboration. Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death. N Engl J Med 2011; 364:829-841.
  37. Wright AK, Kontopantelis E, Emsley R, Buchan I, Sattar N, Rutter MK, et al. Life Expectancy and Cause-Specific Mortality in Type 2 Diabetes: A Population-Based Cohort Study Quantifying Relationships in Ethnic Subgroups. Diabetes Care 2017; 40:338-345.
  38. Lung TWC, Hayes AJ, Herman WH, Si L, Palmer AJ, Clarke PM. A Meta-Analysis of the Relative Risk of Mortality for Type 1 Diabetes Patients Compared to the General Population: Exploring Temporal Changes in Relative Mortality. PLOS ONE 2014; 9:e113635.
  39. Sandahl K, Nielsen LB, Svensson J, Johannesen J, Pociot F, Mortensen HB, et al. Increased mortality in a Danish cohort of young people with Type 1 diabetes mellitus followed for 24 years. Diabet Med 2017; 34:380-386.
  40. Grauslund J. Long-term mortality and retinopathy in type 1 diabetes. Acta Ophthalmol 2010; 88:1-14.


Verhaltensprävention unverzichtbar – aber wie? (S. 17-24)
  1. Montalbo J, Ogurtsova K, Vomhof M, Icks A. Modellbasierte gesundheitsökonomische Evaluation der Diabetesprävention. Diabetologe 2020;16:220-225.
  2. Gaskin DJ, Thorpe RJ Jr, McGinty EE, Bower K, Rohde C, Young JH, LaVeist TA, Dubay L. Disparities in diabetes: the nexus of race, poverty, and place. Am J Public Health. 2014 Nov;104(11):2147-55.
  3. Piller C. Dubious diagnosis Science 2019 Mar;363: 1026-1031.
  4. Timpel P, Harst L, Reifegerste D, Weihrauch-Blüher S, Schwarz PEH. What should governments be doing to prevent diabetes throughout the life course? Diabetologia. 2019 Oct;62(10):1842-1853.
  5. Rose G. Strategy of prevention –lessons from cardiovascular disease. BMJ 1981; 282:1847-1851.
  6. Gerstein HC, Santaguida P, Raina P et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract 2007;78:305–312
  7. Perreault L, Kahn SE, Christophi CA, Knowler WC, Hamman RF, Diabetes Prevention Program Research Group. Regression from pre-diabetes to normal glucose regulation in the diabetes prevention program. Diabetes Care. 2009 Sep;32(9):1583–1588.
  8. Pathophysiology-based subphenotyping of individuals at risk for type 2 diabetes identifies high risk groups for diabetes, its complications and mortality. Wagner R, Heni M, Tabak AG, Machann J, Schick F, Randrianarisoa E, Hrabˇe de Angelis M, Birkenfeld AL, Stefan N, Peter A, HäringH-U, Fritsche A. Nat med 2020 in press
  9. Stefan N, Staiger H, Wagner R, Machann J, Schick F, Häring HU, Fritsche A. A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia. 2015 Dec;58(12):2877-2884
  10. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM, Almgren P, Wessman Y, Shaat N, Spégel P, Mulder H, Lindholm E, Melander O, Hansson O, Malmqvist U, Lernmark Å, Lahti K, Forsén T, Tuomi T, Rosengren AH, Groop L. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 May;6(5):361-369.
  11. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev. 2016 Oct;96(4):1169-1209.
  12. Thamer C, Machann J, Stefan N, Haap M, Schäfer S, Brenner S, Kantartzis K, Claussen C, Schick F, Haring H, Fritsche A. High visceral fat mass and high liver fat are associated with resistance to lifestyle intervention. Obesity (Silver Spring). 2007 Feb;15(2):531-538.
  13. Böhm A, Weigert C, Staiger H, Häring HU. Exercise and diabetes: relevance and causes for response variability. Endocrine. 2016 Mar;51(3):390-401. Weyrich P, Stefan N, Häring HU, Laakso M, Fritsche A. Effect of genotype on success of lifestyle intervention in subjects at risk for type 2 diabetes. J Mol Med (Berl). 2007 Feb;85(2):107-117.
  14. Haupt A, Thamer C, Heni M, Ketterer C, Machann J, Schick F, Machicao F, Stefan N, Claussen CD, Häring HU, Fritsche A, Staiger H. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes. 2010 Mar;59(3):747-750.
  15. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343-1350
  16. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393-403
  17. Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006;49:289-297
  18. Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 2008;371:1783-1789
  19. Yoon U, Kwok LL, Magkidis A. Efficacy of lifestyle interventions in reducing diabetes incidence in patients with impaired glucose tolerance: a systematic review of randomized controlled trials. Metabolism 2013;62:303-314
  20. Schellenberg ES, Dryden DM, Vandermeer B, et al. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2013;159:543-551
  21. Hemmingsen B, Gimenez-Perez G, Mauricio D, et al. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev 2017;12:Cd003054
  22. Haw JS, Galaviz KI, Straus AN, et al. Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern Med 2017;177:1808-1817
  23. Knowler WC, Fowler SE, Hamman RF, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009;374:1677-1686
  24. Lindstrom J, Ilanne-Parikka P, Peltonen M, et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 2006;368:1673-1679
  25. Dannecker C, Hummel J, Fritsche L. Langzeiteffekte von Diabetespräventionsmaßnahmen - Gibt es Effekte über die reine Diabetesprävention hinaus? Diabetologe 2020; 16:215-219
  26. Schwarz PEH, Timpel P, Kempf K, Martin S, Petersen C, Prax K, Schlager H, Friedland K, Hoffmann J, Spies M, Günther J, Hauner H, Landgraf R. Gesundheitsbericht Diabetes 2020: Prävention des Diabetes ist erwachsen geworden., 2019, Seite 26-39, Kirchheim Verlag
  27. Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, McCarthy MI, Nolan JJ, Norris JM, Pearson ER, Philipson L, McElvaine AT, Cefalu WT, Rich SS, Franks PW. Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020 Sep;63(9):1671-1693.


Die Rolle der Ernährung in der Diabetesprävention (S. 25-32)
  1. Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537-544.
  2. Uusitupa M, Louheranta A, Lindström J, et al. The Finnish Diabetes Prevention Study. Br J Nutr. 2000;83
  3. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle inter-vention or metformin. N Engl J Med. 2002;346(6):393-403.
  4. Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289-297.
  5. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial [published correction appears in Lancet. 2006 Nov 18;368(9549):1770]. Lancet. 2006;368(9541):1096-1105.
  6. Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endo-crinol. 2019;7(6):452-461.
  7. Ramsden CE, Zamora D, Majchrzak-Hong S, et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73). BMJ. 2016;353:i1246.
  8. Oh K, Hu FB, Manson JE, Stampfer MJ, Willett WC. Dietary fat intake and risk of coronary heart disease in wom-en: 20 years of follow-up of the nurses‘ health study. Am J Epidemiol. 2005;161(7):672-679.
  9. Wolfram G, Bechthold A, Boeing H, et al. Evidence-Based Guideline of the German Nutrition Society: Fat Intake and Prevention of Selected Nutrition-Related Diseases. Ann Nutr Metab. 2015;67(3):141-204.
  10. Neuenschwander M, Ballon A, Weber KS, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019;366:l2368. Published 2019 Jul 3.
  11. De Lorgeril M, Salen P, Martin JL, et al. Effect of a mediterranean type of diet on the rate of cardiovascular complications in patients with coronary artery disease. Insights into the cardioprotective effect of certain nutri-ments. J Am Coll Cardiol. 1996;28(5):1103-1108.
  12. Schwingshackl L, Chaimani A, Hoffmann G, Schwedhelm C, Boeing H. A network meta-analysis on the compara-tive efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol. 2018;33(2):157-170.
  13. Meng Y, Bai H, Wang S, Li Z, Wang Q, Chen L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2017;131:124-131.
  14. Huntriss R, Campbell M, Bedwell C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr. 2018;72(3):311-325.
  15. Neuenschwander M, Hoffmann G, Schwingshackl L, Schlesinger S. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Eur J Epidemiol. 2019;34(9):837-852.
  16. Suyoto PST. Effect of low-carbohydrate diet on markers of renal function in patients with type 2 diabetes: A meta-analysis. Diabetes Metab Res Rev. 2018;34(7):e3032.
  17. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health. 2018;3(9):e419-e428.
  18. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34.
  19. Schwingshackl L, Chaimani A, Schwedhelm C, et al. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: A systematic review and network meta-analysis. Crit Rev Food Sci Nutr. 2019;59(16):2674-2687.
  20. Neuenschwander M, Hoffmann G, Schwingshackl L, Schlesinger S. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Eur J Epidemiol. 2019;34(9):837-852.
  21. Zimorovat A, Mohammadi M, Ramezani-Jolfaie N, Salehi-Abargouei A. The healthy Nordic diet for blood glu-cose control: a systematic review and meta-analysis of randomized controlled clinical trials. Acta Diabetol. 2020;57(1):1-12.
  22. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167(9):956-965.
  23. InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia. 2015;58(7):1394-1408.
  24. Honsek C, Kabisch S, Kemper M, et al. Fibre supplementation for the prevention of type 2 diabetes and im-provement of glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia. 2018;61(6):1295-1305.
  25. Kabisch S, Meyer NMT, Honsek C, et al. Fasting Glucose State Determines Metabolic Response to Supplementa-tion with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients. 2019;11(10):2385. Published 2019 Oct 6.
  26. Kabisch S, Meyer NMT, Honsek C, et al. Obesity Does Not Modulate the Glycometabolic Benefit of Insoluble Cereal Fibre in Subjects with Prediabetes-A Stratified Post Hoc Analysis of the Optimal Fibre Trial (OptiFiT). Nutri-ents. 2019;11(11):2726. Published 2019 Nov 11.
  27. Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020;17(3):e1003053. Published 2020 Mar 6.
  28. Storz MA, Küster O. Hypocaloric, plant-based oatmeal interventions in the treatment of poorly-controlled type 2 diabetes: A review. Nutr Health. 2019;25(4):281-290.
  29. Zeraatkar D, Guyatt GH, Alonso-Coello P, et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes [published correction appears in Ann Intern Med. 2020 Jul 21;173(2):168]. Ann Intern Med. 2020;172(7):511-512.
  30. Zeraatkar D, Johnston BC, Bartoszko J, et al. Effect of Lower Versus Higher Red Meat Intake on Cardiometabolic and Cancer Outcomes: A Systematic Review of Randomized Trials. Ann Intern Med. 2019;171(10):721-731.
  31. Vernooij RWM, Zeraatkar D, Han MA, et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med. 2019;171(10):732-741.
  32. Valli C, Rabassa M, Johnston BC, et al. Health-Related Values and Preferences Regarding Meat Consumption: A Mixed-Methods Systematic Review. Ann Intern Med. 2019;171(10):742-755.
  33. Kim Y, Je Y, Giovannucci E. Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol. 2019;34(8):731-752.
  34. Carlström M, Larsson SC. Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev. 2018;76(6):395-417.
  35. Kondo Y, Goto A, Noma H, Iso H, Hayashi K, Noda M. Effects of Coffee and Tea Consumption on Glucose Me-tabolism: A Systematic Review and Network Meta-Analysis. Nutrients. 2018;11(1):48. Published 2018 Dec 27.
  36. Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541-551.
  37. Mai K, Brachs M, Leupelt V, et al. Effects of a combined dietary, exercise and behavioral intervention and sym-pathetic system on body weight maintenance after intended weight loss: Results of a randomized controlled trial. Metabolism. 2018;83:60-67.
  38. Look AHEAD Research Group, Chao AM, Wadden TA, et al. Weight Change 2 Years After Termination of the Intensive Lifestyle Intervention in the Look AHEAD Study. Obesity (Silver Spring). 2020;28(5):893-901.
  39. Stefan N, Staiger H, Wagner R, Machann J, Schick F, Häring HU, Fritsche A. A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia. 2015 Dec;58(12):2877-84.
  40. Kulzer B, Hermanns N, Gorges D, Schwarz P, Haak T. Prevention of diabetes self-management program (PRE-DIAS): effects on weight, metabolic risk factors, and behavioral outcomes. Diabetes Care. 2009;32(7):1143-1146.
  41. Statistisches Bundesamt, Genesis-Online Datenbank - 21311-0003, Oktober 2019


Bewegung ist Therapie (S. 33-39)
  1. RKI: Täglicher Lagebericht zur Coronaviruserkrankung; 30.07.2020, aktualisierter Stand für Deutschland; https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Archiv_Juli.html
  2. IDF DIABETES ATLAS: International Diabetes Fondation; 2019
  3. NVL Therapie des Typ-2-Diabetes Langfassung 1. Auflage, Version 4; S. 115ff (Gültigkeit der Leitlinie ist abgelaufen und befindet sich derzeit in Überarbeitung)
  4. Tuomilehto J, Lindstrom J, Eriksson JG et al.: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance; N Engl J Med 2001; 344: 1343-50
  5. Lindström J, Peltonen M, Eriksson JG et al.: Improved lifestyle and decreased diabetes risk over 13 years: Long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS); Diabetologia 2013; 56: 284-93
  6. Diabetes Prevention Program Research Group; Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study; Lancet Diabetes Endocrinol 2015; 3: 866–875
  7. The Emerging Risk Factors Collaboration: Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death. N Engl J Med 2011; 364:829-41.
  8. The Emerging Risk Factors Collaboration: Association of Cardiometabolic Multimorbidity With Mortality. JAMA. 2015;314(1):52-60.
  9. doi:10.1001/jama.2015.7008
  10. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 2004;27: 1879_1884.
  11. Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 2001;24: 1614_1619
  12. Nebel R: Bewegung verbessert bei KHK die Prognose und Lebensqualität. MMW Fortschr Med. 2020; 162(10): 36-39
  13. Al-Mallah MH, Sakr S, Al-Qunaibet A: Cardiorespiratory Fitness and Cardiovascular Disease Prevention: an Update. Current Atherosclerosis Reports (2018) 20: 1 https://doi.org/10.1007/s11883-018-0711-4
  14. Preßler A: Bei Herzinsuffizienz körperlich aktiv bleiben! MMW Fortschr Med. 2020; 162(10): 40-43
  15. Löllgen H, Böckenhoff A, Knapp G: Physical Activity and All-cause Mortality: An Updated Meta-analysis with Different Intensity Categories. Int J Sports Med 2009; 30: 213-224
  16. Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P, Kaur A, Smith CF, Wilkins E, Rayner M, Roberts N, Scarborough P: Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2016;5:e002495 doi: 10.1161/JAHA.115.002495
  17. Morbach S et al. Diabetisches Fußsyndrom. Diabetologie 2019; 14 (Suppl 2): S267–S277
  18. Matos M, Mendes R, Silva AB, Sousa N. Physical activity and exercise on diabetic foot related outcomes: A systematic review. Diabetes Res Clin Pract. 2018 May;139:81-90. doi: 10.1016/j.diabres.2018.02.020. Epub 2018 Feb 23.
  19. Liao F, An R, Pu F, Burns St, Shen S, Jan Y-K: Effect of Exercise on Risk Factors of Diabetic Foot Ulcers. A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil 2019;98:103–116
  20. Streckmann F, Balke M: Bewegungstherapie bei Polyneuropathie. Diabetologe 2018; 14:605–617 https://doi.org/10.1007/s11428-018-0426-8
  21. Bus SA, Lavery LA, Monteiro-Soares M, Rasmussen A, Raspovic A, Sacco ICN, van NettenJJ on behalf of the International Working Group on the Diabetic Foot (IWGDF): IWGDF Guideline on the prevention of foot ulcers in persons with diabetes. https://iwgdfguidelines.org/wp-content/uploads/2019/05/02-IWGDF-prevention-guideline-2019.pdf Zugriff: 07.07.2020
  22. Yonossi Z. M. Non-alcoholic Fatty Liver Disease - A Global Public Health Perspective. J Hepatol. 2019 Mar;70(3):531-544.
  23. Wei H, Qu H, Wang H, Deng H. Associations between sitting time and non-alcoholic fatty liver diseases in Chinese male workers: a cross-sectional study. BMJ Open. 2016;6(9):e011939.
  24. Croci I; Coombes JS; Bucher Sandbakk S; Keating SE; Nauman J; Macdonald GA; Wisloff U. Non-alcoholic fatty liver disease: Prevalence and all-cause mortality according to sedentary behaviour and cardiorespiratory fitness. The HUNT Study.
 Progress in Cardiovascular Diseases. 2019; 62(2):127-134
  25. Parry S.A.; Hodson L. Managing NAFLD in Type 2 Diabetes: The Effect of Lifestyle Interventions, a Narrative Review. Adv.Ther. 2020 Apr.; 37(4):1381-1406
  26. Austin P; Gerber L; Paik JM; Price JK; Escheik C; Younossi ZM. Aerobic capacity and exercise performance in nonalcoholic fatty liver disease. Journal of Sports Medicine & Physical Fitness. 2019; 59(8):1376-1388.

  27. Brouwers B; Schrauwen-Hinderling VB; Jelenik T; Gemmink A; Sparks LM; Havekes B; Bruls Y; Dahlmans D; Roden M; Hesselink MKC; Schrauwen P. Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver.
American Journal of Physiology - Endocrinology & Metabolism. 2018;314(2):165-173
  28. Houghton D; Thoma C; Hallsworth K; Cassidy S; Hardy T; Burt AD; Tiniakos D; Hollingsworth KG; Taylor R; Day CP; McPherson S; Anstee QM; Trenell MI. Exercise Reduces Liver Lipids and Visceral Adiposity in Patients With Nonalcoholic Steatohepatitis in a Randomized Controlled Trial.
 Clinical Gastroenterology & Hepatology. 2017, 15(1):96-102.
  29. El-Agroudy NN, Kurzbach A, Rodionov RN, et al. Are Lifestyle Therapies Effective for NAFLD Treatment?. Trends Endocrinol Metab. 2019;30(10):701-709.
  30. Sargeant JA, Gray LJ, Bodicoat DH, et al. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obes Rev. 2018;19(10):1446–59.
  31. Hallsworth K, Fattakhova G, Hollingsworth KG, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease inde- pendent of weight loss. Gut. 2011;60(9):1278–83.
  32. Hashida R; Kawaguchi T; Bekki M; Omoto M; Matsuse H; Nago T; Takano Y; Ueno T; Koga H; George J; Shiba N; Torimura T. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. 
 Journal of Hepatology. 2017;66(1):142-152.

  33. Korean Association for the Study of the Liver (KASL). KASL clinical practice guidelines: management of non- alcoholic fatty liver disease. Clin Mol Hepatol 2013;19:325- 48.
  34. Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Soliman GS. A randomized controlled trial on the effectiveness of 8-week high-intensity interval exercise on intrahepatic triglycerides, visceral lipids, and health-related quality of life in diabetic obese patients with nonalcoholic fatty liver disease. Medicine (Baltimore). 2019;98(12):e14918.
  35. Qiu S, Cai X, Sun Z, et al. Association between physical activity and risk of nonalcoholic fatty liver disease: a meta-analysis. Therap Adv Gastroenterol. 2017;10(9):701-713.
  36. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016;64:1388-1402.
  37. Kirk-Sanchez NJ, McGough EL Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51-62.
  38. Hess NCL, Dieberg G, McFarlane JR, Smart NA (2014) The effect of exercise intervention on cognitive performance in persons at risk of, or with, dementia: A systematic review and meta-analysis. Healthy Aging Research 3:3. doi:10.12715/har.2014.3.3
  39. Foster PP et al., Exercise-Induced Cognitive Plasticity, Implications for Mild Cognitive Impairment and Alzheimer’s Disease. Front Neurol 2011; 2: 28
  40. Bertram S et al., Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer‘s disease in T2DM patients. .Endocrine. 2016; 53: 350 – 363.
  41. Hayes SM et al., A review of cardiorespiratory fitness-related neuroplasticity in the aging. Front Aging Neurosci 2013; 5: 31.
  42. Vaynman et al., Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition Eur J Neurosci 2004; 20: 2580 – 2590
  43. Lee Y et al., Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012; 487(7408): 443 – 448
  44. Babiss, L.A. and Gangwisch, J.E. Sports participation as a protective factor against depression and suicidal ideation in adolescents as mediated by self-esteem and social support. Journal of Developmental and Behavioral Pediatrics, 2009;30, 376-384.
  45. Oertel-Knöchel V et al. Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. Eur Arch Psychiatry Clin Neurosci. 2014 Oct;264(7):589-604
  46. Barbour KA1, Edenfield TM, Blumenthal JA. Exercise as a treatment for depression and other psychiatric disorders: a review. J Cardiopulm Rehabil Prev. 2007 Nov-Dec;27(6):359-67
  47. Rütten A, Pfeifer K (Hrsg.): Nationale Empfehlungen für Bewegung und Bewegungsförderung. https://www.sport.fau.de/files/2016/05; Zugriff: 25.05.2019
  48. American Diabetes Association (2020) Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes. Diabetes Care 43 (Supplement 1): S48-S65; doi: 10.2337/dc20-S005
  49. Krug S, Finger JD, Lange C, Richter A, Mensink GMB: Sport- und Ernährungsverhalten bei Kindern und Jugendlichen in Deutschland - Querschnittergebnisse aus KiGGS Welle 2 und Trends, Journal of Health Monitoring; 2018 3(2) DOI 10.17886/RKI-GBE-2018-065 Robert Koch-Institut, Berlin
  50. Krug S, Jordan S, Mensink GBM, Müters S, Finger JD, Lampert T: Körperliche Aktivität - Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1); 2013 Bundesgesundheitsblatt; 56(5/6):765-771 · DOI 10.1007/s00103-012-1661-6
  51. Rudinger G: Gesundheitskompetenz; Diabetologe 2015; 11: 645-648


Adipositas in Deutschland aus Sicht der Diabetologie (S. 40-48)
  1. Wainberg M, Mahajan Id A, Kundaje Id A, Mccarthy Id MI, Ingelssonid E, Sinnott-Armstrongid N, et al. Homogeneity in the association of body mass index with type 2 diabetes across the UK Biobank: A Mendelian randomization study. 2019 [cited 2020 Jun 8]; Available from: https://doi.org/10.1371/journal.pmed.1002982
  2. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med. Massachussetts Medical Society; 2019;381:2440–50.
  3. Metabolic Status in Children and Its Transitions During Childhood and Adolescence-The IDEFICS/I.Family Study - PubMed [Internet]. [cited 2020 Jul 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/31098634/
  4. Bö C, Russo P, Veidebaum T, Tornaritis M, Nes Molná D, Lissner L, et al. Metabolic status in children and its transitions during childhood and adolescence-the IDEFICS/I.Family study. [cited 2020 Aug 9]; Available from: https://academic.oup.com/ije/article/48/5/1673/5490631
  5. oec-troph Malaika Fuchs Martin Wabitsch D, Hauner H, Kromeyer-Hauschild K, Kunze D, Reinehr T, Tafel J, et al. S3-Leitlinie Therapie und Prävention der Adipositas im Kindes-und Jugendalter [Internet]. Available from: www.a-g-a.de
  6. Perrar I, Schmitting S, Della Corte KW, Buyken AE, Alexy U. Age and time trends in sugar intake among children and adolescents: results from the DONALD study. Eur J Nutr. Springer; 2020;59:1043–54.
  7. Perrar I, Schadow AM, Schmitting S, Buyken AE, Alexy U. Time and Age Trends in Free Sugar Intake from Food Groups among Children and Adolescents between 1985 and 2016. Nutrients [Internet]. MDPI AG; 2019 [cited 2020 Jun 9];12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31861789
  8. Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc Heal [Internet]. Elsevier B.V.; 2020 [cited 2020 Jul 6];4:23–35. Available from: https://pubmed.ncbi.nlm.nih.gov/31761562/
  9. Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. Cell Press; 2020;31:92-104.e5.
  10. Jakubowicz D, Landau Z, Tsameret S, Wainstein J, Raz I, Ahren B, et al. Reductioninglycatedhemoglobin and daily insulin dose alongside circadian clock upregulation in patients with type 2 diabetes consuming a three-meal diet: A randomized clinical trial. Diabetes Care. American Diabetes Association Inc.; 2019;42:2171–80.
  11. Tay J, de Bock MI, Mayer-Davis EJ. Low-carbohydrate diets in type 2 diabetes. Lancet Diabetes Endocrinol. Lancet Publishing Group; 2019. p. 331–3.
  12. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care. NLM (Medline); 2020. p. S48–65.
  13. Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. Lancet Publishing Group; 2019;7:344–55.
  14. Kassenärztliche B, Arbeitsgemeinschaft Der Wissenschaftlichen B, Fachgesellschaften M, Versorgungsleitlinie N. Programm für Nationale VersorgungsLeitlinien Therapie des Typ-2-Diabetes Langfassung 1. Auflage [Internet]. 2013. Available from: www.versorgungsleitlinien.de
  15. Harger A, Stemmer K, Tschöp MH, Müller TD. Incretin-based co- and tri-agonists: Innovative polypharmacology for the treatment of obesity and diabetes. Internist [Internet]. Springer Verlag; 2019 [cited 2020 Jul 12];60:895–902. Available from: https://doi.org/10.1007/s00108-019-0649-9
  16. Jall S, Götz A, Tschöp MH, Müller TD. Polypharmakologie als ein neuer Ansatz zur Präzisionsmedizin in der Adipositas- und Diabetestherapie. Adipositas - Ursachen, Folgeerkrankungen, Ther [Internet]. Georg Thieme Verlag KG; 2018 [cited 2020 Jul 12];12:76–83. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0038-1654054
  17. OHWAKI K, FURIHATA K, MIMURA H, OURA T, IMAOKA T. 1024-P: Effect of Tirzepatide, a Dual GIP and GLP-1 Receptor Agonist, on Glycemic Control and Body Weight in Japanese Patients with T2DM. Diabetes [Internet]. American Diabetes Association; 2019 [cited 2020 Jun 28];68:1024-P. Available from: https://diabetes.diabetesjournals.org/content/68/Supplement_1/1024-P
  18. THOMAS MK, NIKOOIENEJAD A, BRAY R, CUI X, WILSON JM, DUFFIN KL, et al. 980-P: Tirzepatide, a Dual GIP and GLP-1 Receptor Agonist, Improves Markers of Beta-Cell Function and Insulin Sensitivity in Type 2 Diabetes Patients. Diabetes [Internet]. American Diabetes Association; 2019 [cited 2020 Jun 28];68:980-P. Available from: https://diabetes.diabetesjournals.org/content/68/Supplement_1/980-P
  19. Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet [Internet]. Lancet Publishing Group; 2018 [cited 2020 Jun 28];392:2180–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673618322608
  20. www.destatis.de.
  21. McTigue KM, Wellman R, Nauman E, Anau J, Coley RY, Odor A, et al. Comparing the 5-Year Diabetes Outcomes of Sleeve Gastrectomy and Gastric Bypass. JAMA Surg [Internet]. American Medical Association; 2020 [cited 2020 Jul 30];155:e200087. Available from: https://jamanetwork.com/journals/jamasurgery/fullarticle/2762479
  22. S3-Leitlinie: Chirurgie der Adipositas und metabolischer Erkrankungen
  23. Robert M, Espalieu P, Pelascini E, Caiazzo R, Sterkers A, Khamphommala L, et al. Efficacy and safety of one anastomosis gastric bypass versus Roux-en-Y gastric bypass for obesity (YOMEGA): a multicentre, randomised, open-label, non-inferiority trial. Lancet. Lancet Publishing Group; 2019;393:1299–309.


Nichtalkoholische Fett­lebererkrankung: Ursache oder Folge des Diabetes? (S. 49-53)
  1. Younossi ZM, Koenig AB, Abdelatif D et al., Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64, 73-84.
  2. Younossi ZM. Non-alcoholic fatty liver disease – A global public health perspective. J Hepatol. 2019; 70, 531-544
  3. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015 Jun 9;313(22):2263-73.
  4. Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. Lancet Diabetes Endocrinol. 2019; 7, 313-324.
  5. Stefan N, Fritsche A, Schick F, Häring HU. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol. 2016; 4: 789−98.
  6. Stefan N, Schick F, Häring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab 2017; 26: 292−300.
  7. Younossi ZM, Golabi P, de Avila L et al., The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019; 71: 793-801
  8. Stefan N, Häring HU, Schulze MB. Metabolically healthy obesity: the low-hanging fruit in obesity treatment? Lancet Diabetes Endocrinol. 2018; 6: 249-258.
  9. Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, Balletshofer B, Machicao F, Fritsche A, Häring HU. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008 Aug 11;168(15):1609-16.
  10. Eigentler T, Lomberg D, Machann J, Stefan N. Lipodystrophic Nonalcoholic Fatty Liver Disease Induced by Immune Checkpoint Blockade. Ann Intern Med. 2020 Jun 16;172(12):836-837.
  11. Stefan N. Causes, consequences and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 2020 Jul;8(7):616-627.


Immunologie des Typ-1-Diabetes (S. 54-60)
  1. Ziegler AG, Nepom GT. Prediction and Pathogenesis in Type 1 Diabetes. Immunity 2010;32:468–78. https://doi.org/10.1016/j.immuni.2010.03.018.
  2. Serr I, Fürst RW, Ott VB, Scherm MG, Nikolaev A, Gökmen F, et al. MiRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A 2016;113. https://doi.org/10.1073/pnas.1606646113.
  3. Serr I, Scherm MG, Zahm AM, Schug J, Flynn VK, Hippich M, et al. A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Sci Transl Med 2018;10. https://doi.org/10.1126/scitranslmed.aag1782.
  4. Serr I, Fürst RW, Achenbach P, Scherm MG, Gökmen F, Haupt F, et al. Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice. Nat Commun 2016;7. https://doi.org/10.1038/ncomms10991.
  5. Scherm MG, Serr I, Zahm AM, Schug J, Bellusci S, Manfredini R, et al. miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nat Commun 2019. https://doi.org/10.1038/s41467-019-13587-3.
  6. Scherm MG, Serr I, Kaestner KH, Daniel C. The role of T cell miRNAs for regulatory T cell induction in islet autoimmunity. Mol Metab 2019. https://doi.org/10.1016/j.molmet.2019.06.009.
  7. Scherm MG, Daniel C. miRNA Regulation of T Cells in Islet Autoimmunity and Type 1 Diabetes. Curr Diab Rep 2020;20:1–12. https://doi.org/10.1007/s11892-020-01325-9.


Betazell-Ersatztherapie für Patienten mit Diabetes – aktueller Stand 2020 und Perspektiven (S. 61-67)
  1. Steffes MW, Sibley S, Jackson M, Thomas W. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 2003; 26:832-836
  2. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, Oberholzer J, Odorico JS, Garfinkel MR, Levy M, Pattou F, Berney T, Secchi A, Messinger S, Senior PA, Maffi P, Posselt A, Stock PG, Kaufman DB, Luo X, Kandeel F, Cagliero E, Turgeon NA, Witkowski P, Naji A, O‘Connell PJ, Greenbaum C, Kudva YC, Brayman KL, Aull MJ, Larsen C, Kay TW, Fernandez LA, Vantyghem MC, Bellin M, Shapiro AM. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care 2012; 35:1436-1445
  3. Bassi R, Fiorina P. Impact of islet transplantation on diabetes complications and quality of life. Curr Diab Rep 2011; 11:355-363
  4. Gruessner RW, Gruessner AC. The current state of pancreas transplantation. Nat Rev Endocrinol 2013; 9:555-562
  5. Niclauss N, Morel P, Berney T. Has the gap between pancreas and islet transplantation closed? Transplantation 2014; 98:593-599
  6. Thompson DM, Meloche M, Ao Z, Paty B, Keown P, Shapiro RJ, Ho S, Worsley D, Fung M, Meneilly G, Begg I, Al Mehthel M, Kondi J, Harris C, Fensom B, Kozak SE, Tong SO, Trinh M, Warnock GL. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation 2011; 91:373-378
  7. Sollinger HW, Odorico JS, Becker YT, D‘Alessandro AM, Pirsch JD. One thousand simultaneous pancreas-kidney transplants at a single center with 22-year follow-up. Ann Surg 2009; 250:618-630
  8. Robertson RP. Islet transplantation for type 1 diabetes, 2015: what have we learned from alloislet and autoislet successes? Diabetes Care 2015; 38:1030-1035
  9. Gruessner AC, Sutherland DE, Gruessner RW. Long-term outcome after pancreas transplantation. Curr Opin Organ Transplant 2012; 17:100-105
  10. Lehmann R, Graziano J, Brockmann J, Pfammatter T, Kron P, de Rougemont O, Mueller T, Zuellig RA, Spinas GA, Gerber PA. Glycemic Control in Simultaneous Islet-Kidney Versus Pancreas-Kidney Transplantation in Type 1 Diabetes: A Prospective 13-Year Follow-up. Diabetes Care 2015; 38:752-759
  11. Gruessner RW, Dunn DL, Gruessner AC, Matas AJ, Najarian JS, Sutherland DE. Recipient risk factors have an impact on technical failure and patient and graft survival rates in bladder-drained pancreas transplants. Transplantation 1994; 57:1598-1606
  12. Kandaswamy R, Sutherland DE. Pancreas versus islet transplantation in diabetes mellitus: How to allocate deceased donor pancreata? Transplant Proc 2006; 38:365-367
  13. Robertson P, Davis C, Larsen J, Stratta R, Sutherland DE. Pancreas transplantation in type 1 diabetes. Diabetes Care 2004; 27 Suppl 1:S105
  14. Ryan EA, Shandro T, Green K, Paty BW, Senior PA, Bigam D, Shapiro AM, Vantyghem MC. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes 2004; 53:955-962
  15. Senior PA, Bellin MD, Alejandro R, Yankey JW, Clarke WR, Qidwai JC, Schwieger TR, Eggerman TL, Robien MA, Rickels MR. Consistency of quantitative scores of hypoglycemia severity and glycemic lability and comparison with continuous glucose monitoring system measures in long-standing type 1 diabetes. Diabetes Technol Ther 2015; 17:235-242
  16. Brooks AM, Walker N, Aldibbiat A, Hughes S, Jones G, de Havilland J, Choudhary P, Huang GC, Parrott N, McGowan NW, Casey J, Mumford L, Barker P, Burling K, Hovorka R, Walker M, Smith RM, Forbes S, Rutter MK, Amiel S, Rosenthal MJ, Johnson P, Shaw JA. Attainment of metabolic goals in the integrated UK islet transplant program with locally isolated and transported preparations. Am J Transplant 2013; 13:3236-3243
  17. O‘Connell PJ, Holmes-Walker DJ, Goodman D, Hawthorne WJ, Loudovaris T, Gunton JE, Thomas HE, Grey ST, Drogemuller CJ, Ward GM, Torpy DJ, Coates PT, Kay TW. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. Am J Transplant 2013; 13:1850-1858
  18. Choudhary P, Rickels MR, Senior PA, Vantyghem MC, Maffi P, Kay TW, Keymeulen B, Inagaki N, Saudek F, Lehmann R, Hering BJ. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care 2015; 38:1016-1029
  19. Borowiak M, Melton DA. How to make beta cells? Curr Opin Cell Biol 2009; 21:727-732
  20. Zhou Q, Melton DA. Pancreas regeneration. Nature 2018; 557:351-358
  21. Kemter E, Denner J, Wolf E. Will Genetic Engineering Carry Xenotransplantation of Pig Islets to the Clinic? Curr Diab Rep 2018; 18:103
  22. Kemter E, Wolf E. Recent progress in porcine islet isolation, culture and engraftment strategies for xenotransplantation. Curr Opin Organ Transplant 2018; 23:633-641
  23. Klymiuk N, van Buerck L, Bähr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61:1527-1532
  24. Buerck LW, Schuster M, Oduncu FS, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Klymiuk N, Wolf E, Seissler J. LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci Rep 2017; 7:3572
  25. Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, Colton CK, Ludwig S, Kersting S, Bonifacio E, Solimena M, Gendler Z, Rotem A, Barkai U, Bornstein SR. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A 2013; 110:19054-19058


Diabetes und Augenerkrankungen (S. 68-80)
  1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. The New England journal of medicine. 2015;373(3):232-42.
  2. Hammes HP, Welp R, Kempe HP, Wagner C, Siegel E, Holl RW, et al. Risk Factors for Retinopathy and DME in Type 2 Diabetes-Results from the German/Austrian DPV Database. PloS one. 2015;10(7):e0132492.
  3. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010. Diabetes care. 2016;39(9):1643-9.
  4. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. The New England journal of medicine. 2016;375(19):1834-44.
  5. Ponto KA, Koenig J, Peto T, Lamparter J, Raum P, Wild PS, et al. Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia. 2016;59(9):1913-9.
  6. Schorr SG, Hammes HP, Muller UA, Abholz HH, Landgraf R, Bertram B. The Prevention and Treatment of Retinal Complications in Diabetes. Deutsches Arzteblatt international. 2016;113(48):816-23.
  7. Goh JK, Cheung CY, Sim SS, Tan PC, Tan GS, Wong TY (2016) Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol 10(2):282–294.
  8. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410.
  9. Heydon P, Egan C, Bolter L, Chambers R, Anderson J, Aldington S, Stratton IM, Scanlon PH, Webster L, Mann S, du Chemin A, Owen CG, Tufail A, Rudnicka AR. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol.2020 Jun 30:bjophthalmol-2020-316594. doi: 10.1136/bjophthalmol-2020-316594.
  10. Baker C.W. et al, “Effect of Initial Management with Aflibercept vs Laser Photocoagulation vs Observation on Vision Loss Among Patients With Diabetic Macular Edema Involving the Center of the Macula and Good Visual Acuity. A Randomized Clinical Trial” JAMA (2019) 321(19): 1880-1894
  11. Deutsche Ophthalmologische Gesellschaft (DOG), Retinologische Gesellschaft e. V. (RG)
  12. Berufsverband der Augenärzte Deutschlands e. V. (BVA), „Stellungnahme der DOG, der RG und des BVA zur Therapie des diabetischen Makulaödems, Stand August 2019“ Klin Monatsbl Augenheilkd 2020; 237: 325–352
  13. Gross, J. G., et al“Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial.“ JAMA Ophthalmol . (2018) 136(10): 1138-1148.
  14. Lang GE et al, Efficiacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laserphotocoagulation alone in proliferative diabetic retinopathy – the PRIDE-study
  15. Acta Ophthalmol (2019) doi 10.1111/aos.14312
  16. Deutsche Ophthalmologische Gesellschaft, Retinologische Gesellschaft, Berufsverband der Augenärzte Deutschlands, Ergänzende Stellungnahme der DOG, der RG und des BVA zur Therapie der proliferativen diabetischen Retinopathie, Ophthalmologe (2020) 117, 755-759


Diabetes und Fußprobleme in Deutschland 2020 (S. 99-104)
  1. Morbach S, Kersken J, Lobmann R, Nobels F, Doggen K, Van Acker K.; The German and Belgian accreditation models for diabetic foot services. Diabetes Metab Res Rev. 2016 Jan;32 Suppl 1:318-25. doi: 10.1002/dmrr.2752
  2. Bohn B, Grünerbel A, Altmeier M, Giesche C, Pfeifer M, Wagner C, Heise N, Best F, Fasching P, Holl RW; Diabetic foot syndrome in patients with diabetes. A multicenter German/Austrian DPV analysis on 33 870 patients; Diabetes Metab Res Rev . 2018 Sep;34(6):e3020. doi: 10.1002/dmrr.3020.
  3. Gemeinsamer Bundesausschuss (2020) Richtlinie zum Zweitmeinungsverfahren: Aufnahme des Eingriffs Amputationen beim Diabetischen Fußsyndrom sowie weitere Änderung der Richtlinie.; https://www.g-ba.de/beschluesse/4266/
  4. Lobmann R; Diabetisches Fußsyndrom – eine interdisziplinäre Herausforderung; Der Diabetologe 2020; 16: 327-328
  5. Morbach S, Lobmann R, Eckhard M, Müller E, Reike H, Risse A, Rühmenapf G, Spraul M; Praxisleitlinie Diabetisches Fußsyndrom; Diabetologe 2019; 14 (Suppl 2): S267-277
  6. Rogers LC, Lavery LA, Joseph WS, Armstrong DG.; All Feet On Deck-The Role of Podiatry During the COVID-19 Pandemic: Preventing hospitalizations in an overburdened healthcare system, reducing amputation and death in people with diabetes. J Am Podiatr Med Assoc. 2020 Mar 25. doi: 10.7547/20-051. Online ahead of print
  7. Papanas N, Papachristou S.; COVID-19 and Diabetic Foot: Will the Lamp Burn Bright? Int J Low Extrem Wounds . 2020 Jun;19(2):111. doi: 10.1177/1534734620921382.


Diabetes mellitus – Herzerkrankungen – Schlaganfall (S. 105-115)
  1. Jacobs E, Hoyer A, Brinks R., et al.: Burden of Mortality Attributable to Diagnosed Diabetes: A Nationwide Analysis Based on Claims Data From 65 Million People in Germany. Diabetes Care 2017;40:1703
  2. Rawshani A, Rawshani A, Franzén S, et al.: Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018 Aug11; 392(10146):477-486
  3. Rawshani A, Rawshani A, Franzén S, et al.: Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018 Aug 16;379(7):633-644
  4. Tschoepe D, Towae F, Papp A, et al.: High 3-year-mortality rates in females with newly diagnosed diabetes after acute STEMI and NSTEMI: results of the SWEETHEART registry. Diabetologia 2012;55:30–31
  5. Neumann FJ, Sousa-Uva M, Ahlsson A et al.; ESC Scientific Document Group: 2018 ESC/EACTS Guidelines on myocardial revascularization European Heart Journal, ehy394, online published: 25 August 2018
  6. Kristensen SL, Preiss D, Jhund PS, et al.; PARADIGM-HF Investigators and Committees: Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail 2016;9 (1)
  7. Halle M, Gitt AK, Hanefeld M, et al.: Diabetes und Herzinsuffizienz: eine praxisorientierte, kritische Bestandsaufnahme. Dtsch Med Wochenschr 2012; 137:437–441
  8. Junttila MJ, Barthel P, Myerburg RJ, et al.: Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm 2010;7:1396–1403
  9. Lynge TH, Svane J, Pedersen-Bjergaard U, Gislason G, Torp-Pedersen C, Banner J, Risgaard B, Winkel BG, Tfelt-Hansen J.: Sudden cardiac death among persons with diabetes aged 1-49 years: a 10-year nationwide study of 14 294 deaths in Denmark. Eur Heart J. 2020 Jul 21;41(28):2699-2706. doi: 10.1093/eurheartj/ehz891
  10. Cubbon RM, Wheatcroft SB, Grant PJ, et al.: Evaluation of Methods and Management of Acute Coronary Events Investigators: Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J 2007; 28: 540–550
  11. Zinman B, Wanner C, Lachin JM, et al.; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373 (22): 2117–2128
  12. Marso SP, Daniels GH, Brown-Frandsen K, et al. for LEADER Steering Comittee on behalf of the LEADER Trial Investigators: Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375:311-322
  13. Kosiborod M, Cavender M, Norhammar A: Lower rates of hospitalization for heart failure and all-cause death in new users of SGLT2 inhibitors: the CVD-REAL study. 66th Scientific Session of the American College of Cardiology, Washington, DC. März 17–19, 2017. Abstract 415-1
  14. Kirchhof P, Benussi S, Kotecha D, et al.: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016; 18 (11): 1609–78
  15. Doherty JU, Gluckman TJ, Hucker WJ, et al.: 2017 ACC Expert Consensus Decision Pathway for periprocedural management of anticoagulatoon in patients with nonvalvular atrila Fibrillation: a report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol 2017; 69 (7): 871-98
  16. teffel H, Heidbuchel H: ‘Ten Commandments’ of the EHRA Guide for the Use of NOACs in AF. European Heart Journal 2018; 39 (16): 1322
  17. Peters SA, Huxley RR, Woodward M.: Diabetes as a risk factor for stroke in women compares with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014; 383: 1973-80
  18. O‘Donnell MJ, Chin SL, Rangarajan S, et al.; INTERSTROKE investigators: Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 2016 Aug 20;388(10046):761-775
  19. Jeerakathil T, Johnson JA, Simpson SH, et al.; Short-term risk for stroke in doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: a population-based cohort study. Stroke 2007; 38: 1739-43
  20. Bushnell CD, Olson DM, Zhao X, et al.; AVAIL Investigators: Secondary preventive medication persistence and adherence 1 year after stroke. Neurology 2011; 77: 1182-90
  21. Selvin E, Wattanakit K, Steffes MW et al. HbA1c and Peripheral Arterial Disease in Diabetes. The Atherosclerosis Risk in Communities study. Diabetes Care 2006 Apr; 29(4): 877-882
  22. Low Wang CC, Blomster JI, Heizer G et al. Cardiovascular and Limb Outcomes in Patients With Diabetes and Peripheras Artery Disease. The EUCLID Trial. J Am Coll Cardiol. 2018 Dec 25;72(25):3274-3284
  23. Cosentino F, Grant PJ, Aboyans V, et al. 2019; ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323
  24. Forst T, Jacob S. ESC/ EASD-Guidelines 2019 – Was muss man wissen?. Kompendium Diabetes 2020:14-18
  25. Arnott C, Li Q, Kang A et al., Sodium-Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Am Heart Assoc.2020 Feb 4;9(3):e014908
  26. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295-2306
  27. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in Patients With Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019 Nov 21;381(21):1995-2008.
  28. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017 Aug 17;377(7):644-657
  29. Verma S, Mazer DC, Al-Omran M et al. Cardiovascular Outcomes and Safety of Empagliflozin in Patients With Type 2 Diabetes Mellitus and Peripheral Artery Disease: A Subanalysis of EMPA-REG OUTCOME. Circulation. 2018 Jan 23;137(4):405-407
  30. Dhatariya K, Bain SC, Buse JB et al. The Impact of Liraglutide on Diabetes-Related Foot Ulceration and Associated Complications in Patients With Type 2 Diabetes at High Risk for Cardiovascular Events: Results From the LEADER Trial. Diabetes Care. 2018 Oct;41(10):2229-2235


Herzinsuffizienz bei Diabetes mellitus in Deutschland (S. 116-123)
  1. Ponikowski P, Voors AA, Anker SD et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18: 891-975. doi:10.1002/ejhf.592
  2. Nichols GA, Gullion CM, Koro CE et al. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 2004; 27: 1879-1884
  3. Kristensen SL, Preiss D, Jhund PS et al. Risk Related to Pre-Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced Ejection Fraction: Insights From Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial. Circ Heart Fail 2016; 9. doi:10.1161/circheartfailure.115.002560
  4. Solomon SD, McMurray JJV, Anand IS et al. Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine 2019; 381: 1609-1620. doi:10.1056/NEJMoa1908655
  5. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England journal of medicine 2015; 373: 2117-2128. doi:10.1056/NEJMoa1504720
  6. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377: 644-657. doi:10.1056/NEJMoa1611925
  7. Wiviott SD, Raz I, Bonaca MP et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380: 347-357. doi:10.1056/NEJMoa1812389
  8. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019; 380: 2295-2306. doi:10.1056/NEJMoa1811744
  9. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019. doi:10.1056/NEJMoa1911303. doi:10.1056/NEJMoa1911303
  10. Packer M, Anker SD, Butler J et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine 2020. doi:10.1056/NEJMoa2022190. doi:10.1056/NEJMoa2022190


Die Rolle der Plasmalipide und Lipoproteine bei Patienten mit Diabetes (S. 124-128)
  1. Mach F, Baigent C, Catapano AL et al. 2019 ESC/EAS guidelines fort he management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2019; doi:10.1093/eurheartj/ehz455.
  2. Jacobson TA, Ito MK, Maki KC, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report. J Clin Lipidol 2015; 9(2): 129-69.
  3. Jacobson TA, Maki KC, Orringer CE, et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J Clin Lipidol 2015; 9(6 Suppl): S1-122 e1.
  4. Jellinger PS, Handelsman Y, Rosenblit PD, et al. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF DYSLIPIDEMIA AND PREVENTION OF CARDIOVASCULAR DISEASE – EXECUTIVE SUMMARYComplete Appendix to Guidelines available at http://journals.aace.com. Endocr Pract 2017; 23(4): 479-97.
  5. 9. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41(Suppl 1): S86-S104.
  6. Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med 2014; 370(16): 1514-23.
  7. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9438): 937-52.
  8. Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J 2016; 37(25): 1944-58.


Diabetes als ­besondere ­Herausforderung der ­Geriatrie in Deutschland (S. 144-149)
  1. Sandig D et al. Continuous Glucose Monitoring in Adults with Type 1 Diabetes: Real-World Data from the German/Austrian Prospective Diabetes Follow-Up Registry. Diabetes Technol Ther. 2020;22(8):602-612.
  2. Zeyfang A, Zeeh J, Bahrmann A, Kugler JN, Heppner HJ. Diabetes mellitus im Alter. ZfGG 2020 in press
  3. Zeyfang A, Feucht I, Kugler JN. Typ-1-Diabetes im hohen Lebensalter. Diabetologe 16, 139–143 (2020).
  4. Bahrmann et al. Technologie in Wernecke J, Zeyfang A. Diabetes im Alter (Hrsg.). De Gruyter Verlag, Berlin, 2019.
  5. D.u.T. Diabetes und Technologie Report 2020. www.dut-report.de, Zugriff 26.8.2020
  6. G-BA 2014 – https://www.g-ba.de/downloads/91-1031-109/2014-09-08_Wortprotokoll_end_Insulin%20degludec.pdf Zugriff 28.8.2020v
  7. Kronsbein P, Kuniß N. Strukturierte Diabetesschulung Diabetologie und Stoffwechsel 2020; 15(04): 287 – 304
  8. Kambara T, Shibata R, Osanai H, et al. Use of sodium-glucose cotransporter 2 inhibitors in older patients with type 2 diabetes mellitus. Geriatr Gerontol Int. 2018;18(1):108-114.


Diabetes und Schwangerschaft (S. 150-157)
  1. IQTIG. Bundesauswertung zur Erfassungsjahr 2017
  2. Leanne Bellamy, Juan-Pablo Casas, Aroon D Hingorani, David Williams. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis
  3. Rayanagoudar G, Hashi AA, Zamora J, Khan KS, Hitman GA, Thangaratinam S. Quantification of the type 2 diabetes risk in women with gestational diabetes: a systematic review and meta-analysis of 95,750 women. Diabetologia 2016;59:1403–11
  4. Ziegler A-G, Wallner M, Kaiser I, Rossbauer M, Harsunen MH, Lachmann L et al. Long-term protective effect of lactation on the development of type 2 diabetes in women with recent gestational diabetes mellitus. Diabetes 2012;61:3167–71
  5. Lobner K, Knopff A, Baumgarten A, Mollenhauer U, Marienfeld S, Garrido-Franco M et al. Predictors of Postpartum Diabetes in Women With Gestational Diabetes Mellitus. Diabetes 2006;55:792–7
  6. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019;62:905–14
  7. Werner EF, Pettker CM, Zuckerwise L, Reel M, Funai EF, Henderson J et al. Screening for gestational diabetes mellitus: are the criteria proposed by the international association of the Diabetes and Pregnancy Study Groups cost-effective? Diabetes Care 2012;35:529–35
  8. Schäfer-Graf UM, Gembruch U, Kainer F, Groten T, Hummel S, Hösli I et al. Gestational Diabetes Mellitus (GDM) - Diagnosis, Treatment and Follow-Up. Guideline of the DDG and DGGG (S3 Level, AWMF Registry Number 057/008, February 2018). Geburtshilfe und Frauenheilkunde 2018;78:1219–31
  9. Adamczewski H, Weber D, Faber-Heinemann G, Heinemann L, Kaltheuner M. Einfluss der Gestationsdiabetes-Leitlinie der DDG auf die Versorgungsrealität: Analysen des Register GestDiab. Diabetologie und Stoffwechsel 2016;11:341–9
  10. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Therapie des Typ-2-Diabetes. Langfassung. 1. Auflage, Version 4
  11. Olesen 2014 PP Nachsorge Dänemark 1471-2458-14-841
  12. Ko JY, Dietz PM, Conrey EJ, Rodgers LE, Shellhaas C, Farr SL et al. Strategies associated with higher postpartum glucose tolerance screening rates for gestational diabetes mellitus patients. Journal of women‘s health (2002) 2013;22:681–6
  13. Schaefer-Graf UM, Klavehn S, Hartmann R, Kleinwechter H, Demandt N, Sorger M et al. How do we reduce the number of cases of missed postpartum diabetes in women with recent gestational diabetes mellitus? Diabetes Care 2009;32:1960–4
  14. Adekojo O, Revell KR, Preece H, Morris S, Coleman MA, Holt RIG. Low uptake of postpartum screening for Type 2 diabetes in women after a diagnosis of gestational diabetes. Diabetic medicine : a journal of the British Diabetic Association 2016
  15. Ratner RE, Christophi CA, Metzger BE, Dabelea D, Bennett PH, Pi-Sunyer X et al. Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. The Journal of clinical endocrinology and metabolism 2008;93:4774–9
  16. Aroda VR, Christophi CA, Edelstein SL, Zhang P, Herman WH, Barrett-Connor E et al. The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: the Diabetes Prevention Program outcomes study 10-year follow-up. The Journal of clinical endocrinology and metabolism 2015;100:1646–53
  17. GestDiNa_basic – Nachsorge bei Gestationsdiabetes - G-BA Innovationsfonds, 2020.000Z. Available from https://innovationsfonds.g-ba.de/projekte/versorgungsforschung/gestdina-basic-nachsorge-bei-gestationsdiabetes.209. Accessed 18 July 2020


Diabetestechnologie – Hardware, Software und der Mensch (S. 166-172)
  1. Klonoff DC, Parkes JL, Kovatchev BP et al. Investigation of the Accuracy of 18 Marketed Blood Glucose Monitors. Diabetes Care 2018; 41: 1681-1688. doi:10.2337/dc17-1960
  2. Pleus S, Baumstark A, Jendrike N et al. System accuracy evaluation of 18 CE-marked current-generation blood glucose monitoring systems based on EN ISO 15197:2015. BMJ open diabetes research & care 2020; 8. doi:10.1136/bmjdrc-2019-001067
  3. Battelino T, Danne T, Bergenstal RM et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019; 42: 1593-1603. doi:10.2337/dci19-0028
  4. American Diabetes Association. Standards of Medical Care in Diabetes – 2020. Diabetes Care 2020; 43: S1. doi:10.2337/dc20-Sint
  5. Heinemann L, Waldenmaier D, Kulzer B et al. Patch-Pumpen: Sind die alle gleich? Diabetes Stoffwechsel und Herz 2019; 28: 131 - 137
  6. Waldenmaier D, Zschornack E, Buhr A et al. A Prospective Study of Insulin Infusion Set Use for up to 7 Days: Early Replacement Reasons and Impact on Glycemic Control. Diabetes Technol Ther 2020. doi:10.1089/dia.2019.0445. doi:10.1089/dia.2019.0445
  7. Heinemann L, Lange K. „Do it yourself“ (DIY) Automated Insulin Delivery (AID) Systems: Stand der Dinge. Diabetologie und Stoffwechsel 2019; 14: 31-43
  8. Frielitz FS, Schlüter S, Heinemann L et al. Der Auftragsverarbeitungsvertrag (AV-Vertrag): Relevanz und praktische Bedeutung für die Diabetologie. Diabetologie und Stoffwechsel 2020. doi:10.1055/a-1185-8945. doi:10.1055/a-1185-8945
  9. Maahs D. Overview of Continuous Glucose Monitoring Technology and Options—How Far Have We Come? In, ADA Scientific Sessions 2019. San Francisco; 2019
  10. Freckmann G, Schlüter S, Wintergerst P et al. 338-OR: Evaluation of the Spectrum Training Program for Real-Time Continuous Glucose Monitoring: A Multicenter Prospective Study in 120 Adults with Type 1 Diabetes; 2020. doi:10.2337/db20-338-OR


Neue Formen des Glukose­monitorings und die Aus­wirkungen auf Therapie und Schulung in Deutschland (S. 173-182)
  1. Kulzer B, Heinemann L. (2020). Digitalisierungs- und Technologie Report Diabetes 2020. Mainz, Kirchheim Verlag
  2. Gutachten „Looper“. https://www.diabetes-technologie.de/stellungnahme-looper-gutachten-der-ddg (zuletzt abgerufen am 08.10.2020
  3. Ziegler R, Heinemann L, Freckmann G et al. Intermittent Use of Continuous Glucose Monitoring: Expanding the Clinical Value of CGM. J Diabetes Sci Technol. 2020 Feb 17:1932296820905577. doi: 10.1177/1932296820905577
  4. DMP-Anforderungen-Richtlinie: Änderung Anlage 7 (DMP Diabetes mellitus Typ 1) und Anlage 8 (DMP Diabetes mellitus Typ 1 und Typ 2 – Dokumentation), unter: https://www.g-ba.de/beschluesse/4142/ (zuletzt abgerufen am 08.10.2020)
  5. Heinemann L., Kulzer B (2019). Digitalisierungs- und Technologie Report Diabetes 2019. Mainz, Kirchheim Verlag
  6. Danne T, Nimri R, Battelino T, et al. (2017). International Consensus on Use of Continuous Glucose Monitoring Diabetes Care; 40: 1631-1640
  7. Battelino T, Danne T, Bergenstal RM et al. (2019). Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care, 42.8, 1593-1603.
  8. Kröger J, Reichel A, Siegmund T et al. (2018). AGP-Fibel. Mainz: Kirchheim Verlag
  9. Thomas A, Kolassa R, von Sengbusch S et al. (2019). CGM interpretieren. Mainz: Kirchheim Verlag
  10. Kröger J, Siegmund T, Schubert O et al. (2020). AGP-Fibel Ernährung - Mit CGM postprandiale Glukoseverläufe analysieren. Mainz: Kirchheim Verlag
  11. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Diabetes - Strukturierte Schulungsprogramme – Langfassung, 1. Auflage. Version 3. 2012, zuletzt geändert: Juni 2013. unter: ttp://www.versorgungsleitlinien.de/themen/diabetes2/dm2_schulung (zuletzt abgerufen am 08.10.2020)
  12. Gehr B, Holder M, Kulzer B et al. (2017). SPECTRUM. J Diabetes Sci Technol. 2017;11(2):284–9
  13. Kulzer, B., Hermanns, N., Ehrmann, D., Schipfer, M., Kröger, J., Haak, T. (2019). Schulungs- und Behandlungsprogramm für Menschen, die Flash Glucose Monitoring benutzen. Kirchheim-Verlag: Mainz
  14. Hermanns, N., Ehrmann, D., Schipfer, M et al. (2019). The impact of a structured education and treatment programme (FLASH) for people with diabetes using a flash sensor-based glucose monitoring system: results of a randomized controlled trial. Diabetes Research and Clinical Practice, 150, 111-121.


Disease-Management-­Programme für Versicherte mit Diabetes mellitus Typ 1 und 2 – Aktuelles (S. 190-195)
  1. Zulassung der strukturierten Behandlungsprogramme (Disease Management Programme - DMP) durch das Bundesamt für Soziale Sicherung, 11. Zulassungsstand, unter: www.bundesamtsozialesicherung.de/de/themen/krankenversicherung/disease-management-programme/dmp-grundlegende-informationen/ (zuletzt abgerufen am 01.09.2020)
  2. DMP-Anforderungen-Richtlinie, unter: https://www.g-ba.de/richtlinien/83/ (zuletzt abgerufen am 01.09.2020)
  3. DMP-Anforderungen-Richtlinie: Änderung Anlage 7 (DMP Diabetes mellitus Typ 1) und Anlage 8 (DMP Diabetes mellitus Typ 1 und Typ 2 – Dokumentation), unter: https://www.g-ba.de/beschluesse/4142/ (zuletzt abgerufen am 01.09.2020)
  4. DMP-Anforderungen-Richtlinie: Verlängerung der Ausnahmeregelungen für Dokumentationen aufgrund der COVID-19-Pandemie, unter: https://www.g-ba.de/beschluesse/4411/ (Zuletzt abgerufen am 01.09.2020)


Online-Schulung (S. 196-203)
  1. G-BA-Beschluss vom 27.03.2020: DMP-Anforderungen-Richtlinie: Ausnahmeregelungen für Schulungen und Dokumentationen aufgrund der COVID-19-Pandemie: www.g-ba.de
  2. Stellungnahme des VDBD zum G-BA-Beschluss vom 27.03.2020 bzgl. einer Änderung der DMP-Anforderungen-Richtlinie (DMP-A-RL): Ausnahmeregelung für Schulungen und Dokumentationen wegen der COVID-19-Pandemie: www.vdbd.de
  3. Fast-Track-Verfahren für Digitale-Gesundheitsanwendungen (DIGA) nach § 139e SGB (DiGA- Leitfaden BfArM)
  4. Übersicht KBV zertifizierter Videodienstanbieter (Stand Frühjahr 2020): https://www.kbv.de/media/sp/Liste_zertifizierte_Videodienstanbieter.pdf
  5. Ergebnisse der Befragung zur Video-Gruppenschulung, BVND, FIDAM, VDBD, windiab, Juni 2020.
  6. Pressemitteiliung 8/2020: Erste Ergebnisse zur Online-Schulung bei Diabetes Diabetesverbände fordern: Video-Schulungen für Menschen mit Diabetes müssen dauerhaft Kassenleistung werden: www.vdbd.de


Betreuung von Menschen mit Diabetes in Apotheken (S. 204-209)
  1. https://www.abda.de/themen/arzneimitteltherapiesicherheit/weitere-kooperationen-apotheker/kommission-bak-ddg/ (letzter Zugriff am 25.08.2020)
  2. Geschäftsbereich Arzneimittel der ABDA. AMTS, Medikationsanalyse, -plan,-management & Co.: Glossar. Pharm Ztg. 2016; 161 (28): 2117–2135. http://www.abda.de/fileadmin/assets/Medikationsmanagement/Glossar_AMTS_20160627.pdf (letzter Zugriff am 25.08.2020)
  3. www.arzneimittelinitiative.de (letzter Zugriff am 25.08.2020)
  4. https://www.abda.de/fuer-apotheker/arzneimittelkommission/hinweise-und-materialien-fuer-apotheken/pharmakovigilanz-1/ (letzter Zugriff am 25.08.2020)
  5. https://schwangerschaft.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/05_Arbeitsgemeinschaften/AG_Schwangerschaft/oGTT_Loesung_Stellungnahme_LH_final.pdf (letzter Zugriff 25.08.2020)
  6. https://www.pharmazeutische-zeitung.de/verunreinigte-glucosemischung-vermutlich-ein-versehen/ (letzter Zugriff 25.08.2020)


Ausbildungskapazitäten im Bereich Diabetologie und Endokrinologie müssen ausgebaut werden (S. 225-230)
  1. Kufeldt J, Kovarova M, Adolph M, Staiger H, Bamberg M, Häring HU, Fritsche A, Peter A.Prevalence and Distribution of Diabetes Mellitus in a Maximum Care Hospital: Urgent Need for HbA1c-Screening. Exp Clin Endocrinol Diabetes. 2018 Feb;126(2):123-129.
  2. Müller-Wieland D, Merkel M, Hamann A, Siegel E, Ottillinger B, Woker R, Fresenius K. Survey to estimate the prevalence of type 2 diabetes mellitus in hospital patients in Germany by systematic HbA1c measurement upon admission. Int J Clin Pract. 2018 Dec;72(12):e13273
  3. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829-41.
  4. Wright AK, Kontopantelis E, Emsley R, Buchan I, Sattar N, Rutter MK, et al. Life Expectancy and Cause-Specific Mortality in Type 2 Diabetes: A Population-Based Cohort Study Quantifying Relationships in Ethnic Subgroups. Diabetes Care. 2017;40(3):338-45.
  5. Hadji P et al. Dtsch Arztebl Int 2013; 110(4): 52–7. DOI: 10.3238/arztebl.2013.0052.
  6. Kiel S, Ittermann T, Völzke H, Chenot JF, Angelow A. Prevalence of thyroid abnormality: a comparison of ambulatory claims data with data from a population-based study. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2019 Aug;62(8):1004-1012. doi: 10.1007/s00103-019-02983-1.
  7. Fachserie “Grunddaten der Krankenhäuser und Vorsorge- oder Rehabilitationseinrichtungen”, Statistisches Bundesamt 1991 und 2017


Stellenwert der stationären Stoffwechseleinstellung im Jahr 2020/2021 (S. 231-237)
  1. Meier JJ: Stationäre Therapie des Typ-2-Diabetes. Diabetologie und Stoffwechsel 2020;15:225-234
  2. Stark Casagrande S, Fradkin JE, Saydah SH, Rust KF, Cowie CC: The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes care 2013;36:2271-2279
  3. Nauck MA, Meier JJ: Diabetes: Incretin mimetics and insulin - closing the gap to normoglycaemia. Nat Rev Endocrinol 2016;12:689-690
  4. von Noorden C: Die Haferkur. In Die Zuckerkrankheit und ihre Behandlung, Verlag von August Hirschwald, 1910, p. 312-321
  5. Mackenzie R, Maxwell N, Castle P, Elliott B, Brickley G, Watt P: Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. J Clin Endocrinol Metab 2012;97:E546-555
  6. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, D‘Alessio DA, Davies MJ: 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes care 2020;43:487-493
  7. Nauck MA, Lindmeyer AM, Mathieu C, Meier JJ: Twenty-Four Hour Fasting (Basal Rate) Tests to Achieve Custom-Tailored, Hour-by-Hour Basal Insulin Infusion Rates in Patients With Type 1 Diabetes Using Insulin Pumps (CSII). Journal of diabetes science and technology 2019:1932296819882752
  8. Campbell MD, Kime N, McKenna J: Exercise and physical activity in patients with type 1 diabetes. The lancet Diabetes & endocrinology 2017;5:493
  9. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ: The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes care 2001;24:1069-1078
  10. Munsch S, Herpertz S: [Eating disorders associated with obesity and diabetes]. Nervenarzt 2011;82:1125-1132


Psychosoziale Versorgung von Menschen mit Diabetes – aktuelle Aspekte (S. 238-244)
  1. Davies MJ, D‘Alessio DA, Fradkin J, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-2701.
  2. Delamater AM, de Wit M, McDarby V, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Psychological care of children and adolescents with type 1 diabetes. Pediatr Diabetes. 2018;19 Suppl 27:237-249.
  3. American Diabetes Association. 12. Older Adults: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S152-S162.
  4. Deutsche Diabetes Gesellschaft (DDG) S3-Leitlinie Therapie des Typ-1-Diabetes, 2. Auflage AWMF-Registernummer: 057-013 www.awmf.org/leitlinien/detail/ll/057-013.html
  5. Landgraf R, Aberle J, Birkenfeld AL et al. Therapie des Typ-2-Diabetes. DDG-Praxisempfehlung. Diabetologie 2019; 14 (Suppl 2): S167–S187
  6. Neu A, Bürger-Büsing J, Danne T, et al. Diagnosis, Therapy and Follow-Up of Diabetes Mellitus in Children and Adolescents. Exp Clin Endocrinol Diabetes. 2019;127(S 01):S39-S72.
  7. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813-823.
  8. Moulton CD, Pickup JC, Ismail K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol. 2015;3(6):461-471.
  9. Dehn-Hindenberg A, Lange K: Eltern von Kindern mit Typ-1-Diabetes: Folgen für Berufstätigkeit, psycho-soziale Belastungen und Bedarf an Unterstützungsleistungen – Ergebnisse der AMBA-Studie. Diabetologie und Stoffwechsel 2019; 14(S 01): S69
  10. Kovacs Burns K, Nicolucci A, Holt RI, et al. Diabetes Attitudes, Wishes and Needs second study (DAWN2™): cross-national benchmarking indicators for family members living with people with diabetes. Diabet Med. 2013;30(7):778-788.
  11. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019;42(8):1593-1603.
  12. Kulzer B, Albus C, Herpertz S et al. Psychosoziales und Diabetes (Teil 1). Diabetologie und Stoffwechsel 2013; a 8 (3): 198–242.
  13. Kulzer B, Albus C, Herpertz S et al. Psychosoziales und Diabetes (Teil 2). Diabetologie und Stoffwechsel 2013; a 8 (4):292-324.
  14. Kordonouri O, Lange K, Biester T, et al. Determinants of glycaemic outcome in the current practice of care for young people up to 21 years old with type 1 diabetes under real-life conditions. Diabet Med. 2020;37(5):797-804.
  15. Nordentoft M, Rod NH, Bonde JP, et al. Effort-reward imbalance at work and risk of type 2 diabetes in a national sample of 50,552 workers in Denmark: A prospective study linking survey and register data. J Psychosom Res. 2020;128:109867.
  16. Gemeinsamer Bundesausschuss. Richtlinie des Gemeinsamen Bundesausschusses über die 21. Änderung der DMP-Anforderungen-Richtlinie(DMP-A-RL): Änderung der Anlage 7 (DMP Diabetes mellitus Typ 1) und der Anlage 8 (DMP Diabetes mellitusTyp 1 und Typ 2 – Dokumentation). https://www.g-ba.de/downloads/40-268-6304/2020-01-16_DMP-A-RL_Aenderung-Anlage-7-8-DMP-Diabetes-mellitus_Servicedokument.pdf access: 5.9.2020
  17. Kempf K, Altpeter B, Berger J, et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care. 2017;40(7):863-871. doi:10.2337/dc17-0303


Versorgung von Kindern und Jugendlichen mit Diabetes – aktuelle Situation und Veränderungen der letzten 25 Jahre (S. 245-255)
  1. Hofer SE, Schwandt A, Holl RW. Standardized documentation in pediatric diabetology: experience from Austria and Germany. J Diabetes Sci Technol 2016;10:1042-1049.
  2. Karges B, Neu A, Hofer SE et al. Häufigkeit und Einflussfaktoren der Ketoazidose bei Diabetesmanifestation im Kindes- und Jugendalter. Klinische Pädiatrie 2011;223:70-73.
  3. Larsson HE, Vehik K, Bell R, et al. Reduced Prevalence of Diabetes Ketoacidosis at Diagnosis of Type 1 Diabetes in Young Children Participating in Longitudinal Follow-Up. Diabetes Care 2011;34:2347–2352
  4. Karges B, Schwandt A, Heidtmann B, et al. Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 2017; 318:1358-1366.
  5. Grimsmann JM, von Sengbusch S, Freff M, et al. Glucose management indicator based on sensor data and laboratory HbA1c in people with type 1 diabetes from the DPV database: differences by sensor type. Diabetes Care 2020; doi: 10.2337/dc20-0259
  6. Karges B, Kapellen T, Wagner VM, et al. Glycated hemoglobin A1c as a risk factor for severe hypoglycemia in pediatric type 1 diabetes. Pediatr Diabetes 2017;18(1):51-58.
  7. Haynes A, Hermann JM, Miller KM, et al. Severe hypoglycemia rates are not associated with HbA1c: a cross-sectional analysis of 3 contemporary pediatric diabetes registry databases. Pediatr Diabetes 2016;18(7):643-650.
  8. Schwandt A, Hermann JM, Rosenbauer J, et al. Longitudinal trajectories of metabolic control from childhood to young adulthood in type 1 diabetes from a large German/Austrian registry: a group-based modeling approach. Diabetes Care 2017;40:309-316
  9. Tittel SR, Rosenbauer J, Kamrath C, et al. Did the COVID-19 lockdown affect the incidence of pediatric type 1 diabetes in Germany? Diabetes Care 2020; doi: 10.2337/dc20-1633
  10. Kamrath C, Mönkemöller K, Biester T, et al. Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID-19 pandemic in Germany. JAMA 2020; doi: 10.1001/jama.2020.13445
  11. Auzanneau M, Lanzinger S, Bohn B, et al. Area deprivation and regional disparities in treatment and outcome quality of 29,284 pediatric patients with type 1 diabetes in Germany: a cross-sectional multicenter DPV analysis. Diabetes Care 2018;41:2517-2525.
  12. Sherr JL, Hermann JM, Campbell F, et al. Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia 2016;59:87-91.
  13. Charalampopoulos D, Hermann JM, Svensson J, et al. Exploring variation in glycemic control across and within eight high-income countries: a cross-sectional analysis of 64,666 children and adolescents with type 1 diabetes. Diabetes Care 2018;41:1180-1187.
  14. Cherubini V, Grimsmann JM, Åkesson K, et al. Temporal trends in diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes between 2006 and 2016: results from 13 countries in three continents. Diabetologia 2020;63:1530-1541.
  15. Bächle C, Scheuing N, Kruse J, et al. Gestörtes Essverhalten und Essstörungen bei Typ-1-Diabetes: Ein Zusammenspiel mit Relevanz für die Diabetestherapie? Diabetes, Stoffwechsel und Herz 2014;23(3):156-160.v
  16. Hilgard D, Konrad K, Meusers M, et al. Comorbidity of attention deficit hyperactivity disorder and type 1 diabetes in children and adolescents: Analysis based on the multicentre DPV registry. Pediatr Diabetes 2016;18(8):706-713.
  17. Plener PL, Molz E, Berger G, et al. Depression, metabolic control, and antidepressant medication in young patients with type 1 diabetes. Pediatr Diabetes 2015;16(1):58-66.
  18. Galler A, Hilgard D, Bollow E, et al. Psychological care in children and adolescents with type 1 diabetes in a real-world setting and associations with metabolic control. Pediatr Diabetes 2020; doi: 10.1111/pedi.13065.
  19. Warncke K, Kummer S, Raile K, et al. Frequency and characteristics of MODY 1 (HNF4AMutation) and MODY 5 (HNF1BMutation): analysis from the DPV database. J Clin Endocrinol Metab 2019;104(3):845–855.
  20. Rosenbauer J, Neu A, Rothe U, et al. Types of diabetes are not limited to age groups: type 1 diabetes in adults and type 2 diabetes in children and adolescents. Journal of Health Monitoring · 2019;4(2): doi: 10.25646/5987
  21. Kapellen T, Müther S, Schwandt A, et al. Transition to adult diabetes care in Germany-High risk for acute complications and declining metabolic control during the transition phase. Pediatr Diabetes 2018; [im Druck]


Gesundheitsökonomische Aspekte des Diabetes mellitus (S. 258-264)
  1. Bächle CC, Holl RW, Straßburger K, Molz E, Chernyak N, Beyer P, Schimmel U, Rütschle H, Seidel J, Lepler R, Holder M, Rosenbauer J, Icks A. Costs of paediatric diabetes care in Germany: current situation and comparison with the year 2000. Diabet Med. 2012; 29:1327-1334.
  2. Chernyak N, Jülich F, Kasperidus J, Stephan A, Begun A., Kaltheuner M, Icks A. Time cost of diabetes: Development of a questionnaire to assess time spent on diabetes self-care. Journal of Diabetes and Its Complications. 2017; 31(1): 260–266.
  3. Hoffmann F, Claessen H, Morbach S, Waldeyer R, Glaeske G, Icks A. Impact of diabetes on costs before and after major lower extremity amputations in Germany. J Diab Comp. 2013; 27: 467-472.
  4. Icks A, Claessen H, Strassburger K, Waldeyer R, Chernyak N, Jülich F, Rathmann W, Thorand B, Meisinger C, Huth C, Rückert I-M, Schunk M, Giani G, Holle R. Patient time costs attributable to healthcare use in diabetes: results from the population-based KORA survey in Germany. Diabet Med. 2013; 30: 1245-1249.
  5. Icks A, Haastert B, Arend W, Konein J, Thorand B, Holle R et al. Time spent on self management by people with diabetes: results from the population based KORA survey in Germany. Diabet Med. 2019; 36: 970– 981.
  6. Icks A, Haastert B, Arend W, Konein J, Thorand B, Holle R, Laxy M, Schunk M, Neumann A, Wasem J, Chernyak N, Dintsios Ch--M. Patient time costs due to self-management in diabetes may be as high as direct medical costs: results from the population-based KORA survey FF4 in Germany.Diabet Med. 2020; 37(5): 895-897.
  7. International Diabetes Federation: Diabetes Atlas. 9th Edition. Brussels: International Diabetes Federation 2019.
  8. Jacobs E., Hoyer A., Brinks R, Icks A., Kuß O, Rathmann W. Healthcare costs of Type 2 diabetes in Germany. Diabetic Medicine: A Journal of the British Diabetic Association. 2017; 34(6): 855–861.
  9. Kähm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK, Holle R. Health Care Costs Associated With Incident Complications in Patients With Type 2 Diabetes in Germany. Diabetes Care. 2018;41: 971-978.
  10. Kähm K., Stark R, Laxy M, Schneider U, Leidl R. Assessment of excess medical costs for persons with type 2 diabetes according to age groups: an analysis of German health insurance claims data. Diabet Med. 2019; 0: 1-7.
  11. Kitzmann F., Tidelski O, Bestehorn K. The development of costs for antidiabetics in statutory and private health insurance in Germany — an analysis of selected influencing factors. Journal of Public Health: From Theory to Practice. 2020; 28: 305-311.
  12. Kuhlmann A, Krüger H, Seidinger S, Hahn A. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus. The European journal of health economics. 2020; 21: 437–449.
  13. Köster I, Schubert I, Huppertz E. Fortschreibung der KoDiM-Studie: Kosten des Diabetes mellitus 2000–2009. Dtsch Med Wochenschr. 2012; 137: 1013-1016
  14. Köster I, von Ferber L, Ihle P, Schubert I, Hauner H. The cost burden of diabetes mellitus: the evidence from Germany – the CoDiM Study. Diabetologia. 2006; 49: 1498-1504
  15. Montalbo J, Ogurtsova K, Vomhof M, Icks A. Modellbasierte gesundheitsökonomische Evaluation der Diabetesprävention- Typ-2-Diabetes. Der Diabetologe. 2020; 16(3): 220-225.
  16. Radermacher L,; Ponto K, Merkesdal S, Pomart V, Frommer L, Pfeiffer N, König J, Kahaly GJ. Type I Diabetes is the Main Cost Driver in Autoimmune Polyendocrinopathy. The Journal of clinical endocrinology and metabolism. 2020; 105(4): e1307-e1315.
  17. da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, Cavan D, Makaroff LE. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Research and Clinical Practice. 2016;117:48–54Schöffski O, Graf von der Schulenburg JM (Hg.) (2012): Gesundheitsökonomische Evaluationen. Heidelberg, Dordrecht, London, New York: Springer.
  18. Ulrich S, Holle R, Wacker M, Stark R, Icks A, Thorand B, Peters A, Laxy M. Cost burden of type 2 diabetes in Germany: results from the population-based KORA studies. BMJ Open. 2016; 6(11): e012527.


Das Deutsche Zentrum für Diabetesforschung – Aktuelles aus der Wissenschaft (S. 265-270)
  1. Schwerbel, K. et al: Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation. Journal of Hepatology (2020); DOI: https://doi.org/10.1016/j.jhep.2020.04.031
  2. Kullmann, St. et al. (2020): Brain insulin sensitivity is linked to adiposity and body fat distribution. Nature Communications, DOI: 10.1038/s41467-020-15686-y
  3. Sachs, S. et al, 2020: Targeted pharmacological therapy restores β-cell function for diabetes remission. Nature Metabolism, DOI: 10.1038/s42255-020-0171-3.
  4. Gutmann, Schäfer, Poojari, Brankatschk, Vattulainen, Strauss, and Coskun. (2019): Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. Journal of Cell Biology, DOI: 10.1083/jcb.201907210
  5. Ziegler, A. et al, 2019: Yield of a public health screening of children for islet autoantibodies in Bavaria, Germany. JAMA, DOI: 10.1001/jama.2019.21565
  6. Originalpublikation: Neuenschwander, M. et al.: Role of diet in type 2 diabetes prevention: umbrella review of meta-analyses of prospective observational studies. BMJ 2019. https://doi.org/10.1136/bmj.l2368
  7. Bornstein et al: Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020 Apr 23. pii: S2213-8587(20)30152-2. DOI: 10.1016/S2213-8587(20)30152-2.
  8. Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020, doi.org/10.1038/s41574-020-0364-6
  9. Kamrath, C. et al. Ketoacidosis in Children and Adolescents With Newly Diagnosed Type 1 Diabetes During the COVID-19 Pandemic in Germany. JAMA 2020, DOI: 101001/JAMA.2020.13445


Die Diabetologie aus Sicht des medizinischen Nachwuchses (S. 271-277)
  1. Deutsche Diabetes Gesellschaft (DDG) und diabetesDE – Deutsche Diabetes-Hilfe, Deutscher Gesundheitsbericht Diabetes 2020, Kirchheim + Co GmbH, 2019.
  2. Deutsche Diabetes Gesellschaft (DDG), Geschäftsbericht 2019.
  3. Statistisches Bundesamt (2020, März 13). Studierende nach Fächergruppen. Abgerufen 15. Juli 2020, von https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/studierende-insgesamt-faechergruppe.html#fussnote-1-111020


Vom Elfenbeinturm zur Kampagnenarbeit – 10 Jahre Deutsche Allianz Nichtübertragbare Krankheiten DANK (S. 278-284)
  1. Effertz T, Gerlach S, Grabfelder M, Müller MJ, Schaller K, Deutsche Allianz gegen Nichtübertragbare Krankheiten. Prävention nichtübertragbarer Krankheiten – eine gesamtgesellschaftliche Aufgabe: Grundsatzpapier der Deutschen Allianz Nichtübertragbare Krankheiten (DANK). 2016 http://www.dank-allianz.de/files/content/dokumente/DANK-Grundsatzpapier_ES.pdf
  2. Effertz T, Garlichs D, Gerlach S, Müller MJ, Pötschke-Langer M, Prümel-Philippsen U, et al. Wirkungsvolle Prävention chronischer Krankheiten. Strategiepapier der NCD-Allianz zur Primärprävention. Prävention und Gesundheitsförderung. 2015;10:95–100.
  3. Effertz T. Die Auswirkungen der Besteuerung von Lebensmitteln. 2018. https://www.dank-allianz.de/files/content/nachrichten/nachrichten-dank/2017/Pressemeldungen/05_Zucker_Fett_Steuer_Deutschland_Endbericht_Stand_06112017.pdf.
  4. O.A. Ein neuer Aufbruch für Europa. Eine neue Dynamik für Deutschland. Ein neuer Zusammenhalt für unser Land. Koalitionsvertrag zwischen CDU, CSU und SPD. 2018
  5. Max-Rubner-Institut (2020) Ergebnisbericht Produktmonitoring 2019.
  6. Forsa. Meinungen zu Kennzeichnungssystemen bei Lebensmitteln. Berlin; 2019


Unverzichtbare Handlungsfelder – Probleme, Lösungen, Erfolge (S. 285-292)
  1. https://www.aerzteblatt.de/nachrichten/113357/COVID-19-Diabetiker-und-Krebspatienten-haben-deutlich-erhoehtes-Sterberisiko?rt=3e7a720f54ff3b6868ac22a56c16b69b
  2. DUT-Report 2020, Prof. Bernd Kulzer et. al
  3. https://www.cducsu.de/themen/familie-frauen-arbeit-gesundheit-und-soziales/dietrich-monstadt-vorbeugung-und-frueherkennung-von-diabetes-mellitus-ausbauen
  4. https://www.diabetesde.org/pressemitteilung/nationale-diabetesstrategie-nur-erste-begruessenswerte-schritt
  5. https://www.aerztekammer-bw.de/10aerzte/45aehealth/ePA/index.html
  6. Eigene Umfrage unter Patienten 2018/Fokusgruppeninterviews diabetesDE – Deutsche Diabetes-Hilfe
  7. https://www.data4life.care/de/journal/datenspende-in-medizin/
  8. DUT-Report 2020, Prof. Bernd Kulzer et. Al
  9. https://www.deutsche-diabetes-gesellschaft.de/presse/ddg-pressemeldungen/meldungen-detailansicht/article/kinder-mit-diabetes-typ-1-in-schulen-und-kindergaerten-oft-benachteiligt-studien-zeigen-familiaer.html
  10. Ergebnisse der AMBA-Studie, Diabetologie und Stoffwechsel 2019;
  11. https://cdn.website-editor.net/4300a19a123c40fdb7f6ef7fed619d31/files/uploaded/Positionenpapier_DA.pdf
  12. https://cdn.website-editor.net/4300a19a123c40fdb7f6ef7fed619d31/files/uploaded/Positionenpapier_DA.pdf


Diabetes mellitus in Deutschland – Politische Handlungsfelder (S. 293-298)
  1. Schumm-Draeger P, Kapitza T, Mann K, Fölsch UR, Müller-Wieland D. Ökonomisierung in der Medizin - Rückhalt für ärztliches Handeln. Dtsch Ärztebl. 2017; 114: A2238-40
  2. Müller-Wieland D, Bitzer B. Was die Politik in den nächsten vier Jahren im Kampf gegen Diabetes tun sollte. Politische Forderungen der Deutschen Diabetes Gesellschaft (DDG) 2017. https://www.deutsche-diabetes-gesellschaft.de/politik/veroeffentlichungen/gesundheitspolitische-veroeffentlichungen (cited 12.08.2020)
  3. Gallwitz B, Kellerer M, Bitzer B, Müller-Wieland D, Neu A. Diabetes mellitus in Deutschland – Politische Handlungsfelder. In: Gesundheitsbericht Diabetes 2020, Kirchheim Vlg., Mainz 2019, S. 271-278
  4. Ziegler R, Neu A: Diabetes in childhood and adolescence – a guideline-based approach to diagnosis, treatment, and follow-up. Dtsch Ärztebl Int 2018; 115: 146-46. DOI: 10.3238/arztebl.2018.0146
  5. Müller-Wieland D, Ickrath M. Rahmenpapier für einen Code of Conduct Digital Health der Deutschen Diabetes Gesellschaft (DDG) zur digitalen Transformation. https://www.deutsche-diabetes-gesellschaft.de/politik/projekte/code-of-conduct (cited 12.08.2020)
  6. Gemeinsames Positionspapier von DDG, diabetesDE und VDBD zur Forderung nach einem nationalen Rahmenplan. https://www.deutsche-diabetes-gesellschaft.de/politik/stellungnahmen/nationale-diabetesstrategie-kernpunkte-eines-nationalen-rahmenplans (cited 12.08.2020)